選做題(本小題滿分10分。)
選修4-1:幾何證明選講
如圖,圓O的直徑AB=10,弦DE⊥AB于點(diǎn)H,BH=2。
(1)求DE的長(zhǎng);
(2)延長(zhǎng)ED到P,過(guò)P作圓O的切線,
切點(diǎn)為C,若PC=2,求PD的長(zhǎng)。

(1)8
(2)2
(1)AB為圓O的直徑,AB⊥DE,DH=HE,
DH2=AHBH=2(10-2)=16,
DH=4,DE=8
PC切圓O于點(diǎn)C,PC2=PD·PE,
=PD·(PD+8),。校模剑。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

圓心為(-1, 2),半徑為4的圓的方程是(    )
A.(x+1)2 +(y-2) 2 =16B.(x-1)2 +(y+2) 2 =16
C.(x+1)2 +(y-2) 2 =4D.(x-1)2 +(y+2) 2 =4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

請(qǐng)考生在第22、23兩題中任選一題作答,如果多做,則按所做的第一題記分.
(本小題滿分10分)選修4—1:幾何證明選講
如圖,⊙O1與⊙O2相交于A、B兩點(diǎn),過(guò)點(diǎn)A作⊙O1的切線交⊙O2于點(diǎn)C,過(guò)點(diǎn)B作兩圓的割線,分別交⊙O1、⊙O2于點(diǎn)D、E,DE與AC相交于點(diǎn)P.
(Ⅰ)求證:AD∥EC;
 (Ⅱ)若AD是⊙O2的切線,且PA=6,PC=2,BD=9,求AD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)選修4-1:幾何證明選講.
如圖所示,已知與⊙相切,為切點(diǎn),為割線,
相交于點(diǎn),上一點(diǎn),
.
(1)求證:;
(2)若,,求的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知圓C與直線x-y="0" 及x-y-4=0都相切,圓心在直線x+y=0上,則圓C的方程為 _  

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

(幾何證明選講選做題) 如圖,在中, ,,以點(diǎn)為圓心,線段的長(zhǎng)為半徑的半圓交所在直線于點(diǎn)、,交線段于點(diǎn),則線段的長(zhǎng)為            .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題


選作題,請(qǐng)考生在第(22)、(23)、(24)三題中任選一題做答,如果多做,則按所做的第一題記分,每道題滿分10分)
22、選修4—1:幾何證明選講
如圖,△ABC的角平分線AD的延長(zhǎng)線交于的外按圓于點(diǎn)E。
(I)證明:△ABC∽△ADC
(II)若△ABC的面積為AD·AE,求∠BAC的大小。

23、選修4—4:坐標(biāo)系與參數(shù)方程
已知半圓C的參數(shù)方程為參數(shù)且(0≤
P為半圓C上一點(diǎn),A(1,0)O為坐標(biāo)原點(diǎn),點(diǎn)M在射線OP上,線段OM與  的長(zhǎng)度均為
(I)求以O(shè)為極點(diǎn),軸為正半軸為極軸建立極坐標(biāo)系求點(diǎn)M的極坐標(biāo)。
(II)求直線AM的參數(shù)方程。
24、選修4—5,不等式選講
已知函數(shù)  
(I)若不等式的解集為求a值。
(II)在(I) 條件下,若對(duì)一切實(shí)數(shù)恒成立,求實(shí)數(shù)m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若直線與兩坐標(biāo)軸圍成的四邊形有外接圓,則       

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若實(shí)數(shù)滿足,則的最小值為             。

查看答案和解析>>

同步練習(xí)冊(cè)答案