若等差數(shù)列{an}的前5項之和S5=25,且a2=3,則a7=(  )
A.12B.13C.14D.15
B

試題分析:根據(jù)等差數(shù)列的求和公式和通項公式分別表示出S5和a2,聯(lián)立方程求得d和a1,最后根據(jù)等差數(shù)列的通項公式求得答案.即根據(jù)題意,有,故可知d=2,a1=1,∴a7=1+6×2=13,故答案為:13
點(diǎn)評:本題主要考查了等差數(shù)列的性質(zhì).考查了學(xué)生對等差數(shù)列基礎(chǔ)知識的綜合運(yùn)用.屬于基礎(chǔ)題。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列的首項為,對任意的,定義.
(Ⅰ) 若
(i)求的值和數(shù)列的通項公式;
(ii)求數(shù)列的前項和
(Ⅱ)若,且,求數(shù)列的前項的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知數(shù)列-1,a1,a2,-4成等差數(shù)列,-1,b1,b2,b3,-4成等比數(shù)列,則的值是(    ).
A.B.-C.-D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知方程tan2x一tan x+1=0在x[0,n)( nN*)內(nèi)所有根的和記為an
(1)寫出an的表達(dá)式;(不要求嚴(yán)格的證明)
(2)記Sn = a1 + a2 +…+ an求Sn;
(3)設(shè)bn =(kn一5) ,若對任何nN* 都有anbn,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分16分)
已知數(shù)列,其中是首項為1,公差為1的等差數(shù)列;是公差為的等差數(shù)列;是公差為的等差數(shù)列().
(Ⅰ)若= 30,求
(Ⅱ)試寫出a30關(guān)于的關(guān)系式,并求a30的取值范圍;
(Ⅲ)續(xù)寫已知數(shù)列,可以使得是公差為3的等差數(shù)列,請你依次類推,把已知數(shù)列推廣為無窮數(shù)列,試寫出關(guān)于的關(guān)系式(N);
(Ⅳ)在(Ⅲ)條件下,且,試用表示此數(shù)列的前100項和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)
已知數(shù)列為公差不為的等差數(shù)列,為前項和,的等差中項為,且.令數(shù)列的前項和為
(Ⅰ)求;
(Ⅱ)是否存在正整數(shù)成等比數(shù)列?若存在,求出所有的的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

等差數(shù)列中,,且,則           .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)Sn是等差數(shù)列{an}的前n項和,若,則 = (    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

等差數(shù)列的前項和為,那么值的是 (  )
A.30B.65C.70D.130

查看答案和解析>>

同步練習(xí)冊答案