【題目】設(shè)a1 , a2 , …,an是1,2,…,n的一個排列,求證: ·
【答案】證明:設(shè)b1 , b2 , …bn-1是a1 , a2 , …,a n-1的一個排列,且b1<b2<…<bn-1 , c1 , c2 , …,cn-1是a2 , a3 , …,an的一個排列,且c1<c2<…<cn-1 , 則 且b1≥1,b2≥2,…,bn-1≥n-1,c1≤2,c2≤3,…,cn-1≤n.
利用排序不等式,有 .
∴原不等式成立.
【解析】本題主要考查了排序不等式,解決問題的關(guān)鍵是在排序不等式的條件中需要限定各數(shù)值的大小關(guān)系,對于沒有給出大小關(guān)系的情況,要根據(jù)各字母在不等式中地位的對稱性,限定一種大小關(guān)系.
【考點精析】掌握排序不等式是解答本題的根本,需要知道排序不等式(排序原理):設(shè)為兩組實數(shù).是的任一排列,則(反序和亂序和順序和)當(dāng)且僅當(dāng)或時,反序和等于順序和.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}及等差數(shù)列{bn},若a1=3, (n≥2),a1=b2 , 2a3+a2=b4 ,
(1)證明數(shù)列{an﹣2}為等比數(shù)列;
(2)求數(shù)列{an}及數(shù)列{bn}的通項公式;
(3)設(shè)數(shù)列{anbn}的前n項和為Tn , 求Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{bn}滿足bn=| |,其中a1=2,an+1=
(1)求b1 , b2 , b3 , 并猜想bn的表達式(不必寫出證明過程);
(2)設(shè)cn= ,數(shù)列|cn|的前項和為Sn , 求證Sn< .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面α內(nèi)有一以AB為直徑的圓,PA⊥α,點C在圓周上移動(不與A,B重合),點D,E分別是A在PC,PB上的射影,則( )
A.∠ACD是二面角A﹣PC﹣B的平面角
B.∠AED是二面角A﹣PB﹣C的平面角
C.∠EDA是二面角A﹣PC﹣B的平面角
D.∠DAE是二面角B﹣PA﹣C的平面角
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,以原點O為極點,x軸的正半軸為極軸,建立極坐標(biāo)系.已知曲線C1: (t為參數(shù)),C2: (θ為參數(shù)). (Ⅰ)化C1 , C2的方程為普通方程,并說明它們分別表示什么曲線;
(Ⅱ)若C1上的點P對應(yīng)的參數(shù)為t=﹣ ,Q為C2上的動點,求線段PQ的中點M到直線C3:ρcosθ﹣ ρsinθ=8+2 距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)Sn為數(shù)列{an}的前n項和,a1=1,Sn=2Sn﹣1+n﹣2(n≥2),則a2017等于( )
A.22016﹣1
B.22016+1
C.22017﹣1
D.22017+1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】①設(shè)三個正實數(shù)a , b , c , 滿足 ,求證:a , b , c一定是某一個三角形的三條邊的長;
②設(shè)n個正實數(shù) a1,a2,...an 滿足不等式 (其中 ),求證: a1,a2,...an 中任何三個數(shù)都是某一個三角形的三條邊的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等比數(shù)列{an}的各項均為正數(shù),且a2=6,a3+a4=72.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足bn=an﹣n(n∈N*),求數(shù)列{bn}的前n項和 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知{an}是各項為正數(shù)的等比數(shù)列,{bn}是等差數(shù)列,且a1=b1=1,b2+b3=2a3 , a5﹣3b2=7.
(1)求{an}和{bn}的通項公式;
(2)設(shè)cn=anbn , n∈N* , 求數(shù)列{cn}的前n項和為Sn .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com