如圖,已知A、B、C是長軸為4的橢圓上的三點(diǎn),點(diǎn)A是長軸的右頂點(diǎn),BC過橢圓中心O,且
AC
BC
=0,|
BC
|=2|
AC
|
,
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若過C關(guān)于y軸對(duì)稱的點(diǎn)D作橢圓的切線DE,則AB與DE有什么位置關(guān)系?證明你的結(jié)論.
分析:(1)設(shè)所求橢圓的方程為:
x2
4
+
y2
b2
=1(0<b<2)
,由橢圓的對(duì)稱性知,|OC|=|OB|,由
AC
BC
=0,AC⊥BC
.|BC|=2|AC|,|OC|=|AC|,知△AOC是等腰直角三角形,由此能夠求出橢圓方程.
(2)設(shè)所求切線方程為y-1=k(x+1),由
y=kx+k+1
x2
4
+
3y2
4
=1
,消去x,(1+3k2)x2+6k(k+1)x+3(k+1)2-4=0
,由判別式等于0,能判斷AB與DE平行.
解答:解:(1)A(2,0),
設(shè)所求橢圓的方程為:
x2
4
+
y2
b2
=1(0<b<2)
,…(2分)
由橢圓的對(duì)稱性知,
|OC|=|OB|,
AC
BC
=0,AC⊥BC

∵|BC|=2|AC|,
∴|OC|=|AC|,
∴△AOC是等腰直角三角形,
∴C是坐標(biāo)為(1,1).…(4分)
∵C點(diǎn)在橢圓上,
12
4
+
1
b2
=1
,
b2=
4
3

所求的橢圓方程為
x2
4
+
3y2
4
=1
.…(8分)
(2)AB與DE是平行關(guān)系…(10分)
D(-1,1),
設(shè)所求切線方程為y-1=k(x+1),
y=kx+k+1
x2
4
+
3y2
4
=1
,消去x,(1+3k2)x2+6k(k+1)x+3(k+1)2-4=0
…(12分)
上述方程中判別式△=9k2-6k+1=0,k=
1
3

kAB=
1
3
,
所以AB與DE平行…(14分)
點(diǎn)評(píng):本題主要考查橢圓標(biāo)準(zhǔn)方程,簡單幾何性質(zhì),直線與橢圓的位置關(guān)系,直線的簡單性質(zhì)等基礎(chǔ)知識(shí).考查運(yùn)算求解能力,推理論證能力;考查函數(shù)與方程思想,化歸與轉(zhuǎn)化思想.易錯(cuò)點(diǎn)是綜合性強(qiáng),難度大,容易出錯(cuò).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

17、如圖,已知A、B、C、D分別為過拋物線y2=4x焦點(diǎn)F的直線與該拋物線和圓(x-1)2+y2=1的交點(diǎn),則|AB|•|CD|=
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知A、B、C、D分別為過拋物線y2=4x的焦點(diǎn)F的直線與該拋物線和圓(x-1)2+y2=1的交點(diǎn),則|AB|•|CD|等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知A、B、C、D四點(diǎn)共圓,延長AD和BC相交于點(diǎn)E,AB=AC.
(1)證明:AB2=AD•AE;
(2)若EG平分∠AEB,且與AB、CD分別相交于點(diǎn)G、F,證明:∠CFG=∠BGF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•臺(tái)州二模)如圖,已知A、B、C是一條直路上的三點(diǎn),一個(gè)人從A出發(fā)行走到B處時(shí),望見塔M(將塔M視為與A、B、C在同一水平面上一點(diǎn))在正東方向且A在東偏南α方向,繼續(xù)行走1km在到達(dá)C處時(shí),望見塔M在東偏南β方向,則塔M到直路ABC的最短距離為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案