已知奇函數(shù)f (x)滿足:f(x+2)=f(x),且f(-
12
)=0,則f(x)=0,在x∈[0,4]的解的個(gè)數(shù)為
 
分析:先由f(x)是奇函數(shù)得到f(0)=0,再由周期性和f(-
1
2
)=0,得到f(
1
2
)=f(
3
2
)=f(
5
2
)=f(-
1
2
)=f(-
3
2
)=f-(
5
2
)=0得解.
解答:解:∵f(x)是奇函數(shù)
∴f(0)=0
又∵f(-
1
2
)=0,
∴f(
1
2
)=0
又∵f(x+2)=f(x)
∴f(
1
2
)=f(
3
2
)=f(
5
2
)=0
∴f(-
1
2
)=f(-
3
2
)=f-(
5
2
)=0
∴f(x)=0,在x∈[0,4]的解的個(gè)數(shù)為7
故答案為:7
點(diǎn)評(píng):本題主要考查函數(shù)的奇偶性和周期性.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知奇函數(shù)f(x)為R上的減函數(shù),則關(guān)于a的不等式f(a2)+f(2a)>0的解集是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知f(x)=lg
1-x1+x
,判斷f(x)的奇偶性
(2)已知奇函數(shù)f(x)的定義域?yàn)镽,x∈(-∞,0)時(shí),f(x)=-x2-x-1,求f(x)解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下面四個(gè)命題:
①已知函數(shù)f(x)=
x
 ,x≥0 
-x
 ,x<0 
且f(a)+f(4)=4,那么a=-4;
②一組數(shù)據(jù)18,21,19,a,22的平均數(shù)是20,那么這組數(shù)據(jù)的方差是2;
③要得到函數(shù)y=sin(2x+
π
3
)
的圖象,只要將y=sin2x的圖象向左平移
π
3
單位;
④已知奇函數(shù)f(x)在(0,+∞)為增函數(shù),且f(-1)=0,則不等式f(x)<0的解集{x|x<-1}.
其中正確的是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知奇函數(shù)f(x)的定義域?yàn)镽,且f(x)是以2為周期的周期函數(shù),數(shù)列{an}是首項(xiàng)為1,公差為1的等差數(shù)列,則f(a1)+f(a2)+…+f(a2008)的值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知奇函數(shù)f(x)滿足f(x)=-f(x+2),當(dāng)x∈[0,1]時(shí),f(x)=x,若af2(x)+bf(x)+c=0在x∈[0,6]上恰有5個(gè)根,且記為xi(i=1,2,3,4,5),則x1+x2+x3+x4+x5=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案