設(shè)f(x)=lg
2+x
2-x
,則f(
x
2
)
的定義域?yàn)椋ā 。?/div>
A、(-1,1)
B、(-4,4)
C、(-4,2)
D、(-2,4)
分析:根據(jù)使函數(shù)的解析式f(x)=lg
2+x
2-x
有意義的原則,我們可以求出函數(shù)f(x)的定義域,進(jìn)而根據(jù)復(fù)合函數(shù)定義域“一不變,應(yīng)萬(wàn)變”的原則,即可求出f(
x
2
)
的定義域.
解答:解:∵要使函數(shù)f(x)=lg
2+x
2-x
的解析式有意義
自變量x須滿足
2+x
2-x
>0
則x∈(-2,2)
要使f(
x
2
)
有意義則
-2<
x
2
<2
∴-4<x<4
f(
x
2
)
的定義域?yàn)椋?4,4)
故選B
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是對(duì)數(shù)函數(shù)的定義域,復(fù)合函數(shù)的定義域,其中根據(jù)對(duì)數(shù)函數(shù)真數(shù)大于0的原則,求出f(x)的定義域是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=lg
2+x
2-x
,則f(
x
2
)+f(
2
x
)
的定義域?yàn)?!--BA-->
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=lg
2+x
2-x
,則f(
x
2
)+f(
2
x
)
的定義域?yàn)椋ā 。?/div>
A、(-4,0)∪(0,4)
B、(-4,-1)∪(1,4)
C、(-2,-1)∪(1,2)
D、(-4,-2)∪(2,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:天津 題型:填空題

設(shè)f(x)=lg
2+x
2-x
,則f(
x
2
)+f(
2
x
)
的定義域?yàn)開(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:湖北 題型:單選題

設(shè)f(x)=lg
2+x
2-x
,則f(
x
2
)+f(
2
x
)
的定義域?yàn)椋ā 。?table style="margin-left:0px;width:100%;">A.(-4,0)∪(0,4)B.(-4,-1)∪(1,4)C.(-2,-1)∪(1,2)D.(-4,-2)∪(2,4)

查看答案和解析>>

同步練習(xí)冊(cè)答案