【題目】在棱長(zhǎng)都相等的四面體PABC中,DE、F分別是AB、BC、CA的中點(diǎn),則下面四個(gè)結(jié)論中不成立的是 ( )
A.BC∥平面PDF
B.DF⊥平面PAE
C.平面PDF⊥平面ABC
D.平面PAE⊥平面ABC

【答案】C
【解析】畫(huà)出圖形,如圖所示,

則BC∥DF,又DF平面PDF,BC平面PDF,∴BC∥平面PDF,故A成立;由題意可得AE⊥BC,PE⊥BC,BC∥DF,則DF⊥AE,DF⊥PE,∴DF⊥平面PAE,故B成立;又DF平面ABC,∴平面ABC⊥平面PAE,故D成立. 所以答案是:C


【考點(diǎn)精析】解答此題的關(guān)鍵在于理解直線與平面垂直的判定的相關(guān)知識(shí),掌握一條直線與一個(gè)平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點(diǎn):a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想,以及對(duì)平面與平面垂直的判定的理解,了解一個(gè)平面過(guò)另一個(gè)平面的垂線,則這兩個(gè)平面垂直.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列敘述: ①函數(shù) 是奇函數(shù);
②函數(shù) 的一條對(duì)稱(chēng)軸方程為 ;
③函數(shù) , ,則f(x)的值域?yàn)? ;
④函數(shù) 有最小值,無(wú)最大值.
所有正確結(jié)論的序號(hào)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在等差數(shù)列{an}中,其前n項(xiàng)和是Sn , 若S15>0,S16<0,則在 , ,…, 中最大的是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校有教職員工150人,其中高級(jí)職稱(chēng)15人,中級(jí)職稱(chēng)45人,一般職員90人,現(xiàn)在用分層抽樣抽取30人,則樣本中各職稱(chēng)人數(shù)分別為(
A.5,10,15
B.3,9,18
C.3,10,17
D.5,9,16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了了解初三女生身高情況,某中學(xué)對(duì)初三女生身高情況進(jìn)行了一次測(cè)量,所得數(shù)據(jù)整理后列出了頻率分布表如下:

組別

頻數(shù)

頻率

145.5~149.5

1

0.02

149.5~153.5

4

0.08

153.5~157.5

20

0.40

157.5~161.5

15

0.30

161.5~165.5

8

0.16

165.5~169.5

m

n

合計(jì)

M

N


(1)求出表中m,n,M,N所表示的數(shù)分別是多少?
(2)畫(huà)出頻率分布直方圖;
(3)全體女生中身高在哪組范圍內(nèi)的人數(shù)最多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)直線m與平面α相交但不垂直,則下列說(shuō)法中,正確的是 ( )
A.在平面α內(nèi)有且只有一條直線與直線m垂直
B.過(guò)直線m有且只有一個(gè)平面與平面α垂直
C.與直線m垂直的直線不可能與平面α平行
D.與直線m平行的平面不可能與平面α垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方體ABCD﹣A1B1C1D1中,E,F(xiàn)分別為棱AB,CC1的中點(diǎn),在平面ADD1A1內(nèi)且與平面D1EF平行的直線(
A.有無(wú)數(shù)條
B.有2條
C.有1條
D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)f(x)=x2+ex (x<0)與g(x)=x2+ln(x+a)圖象上存在關(guān)于y軸對(duì)稱(chēng)的點(diǎn),則a的取值范圍是(
A.(﹣
B.(
C.(
D.(

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=loga(1+x),g(x)=loga(1﹣x),其中a>0且a≠1,設(shè)h(x)=f(x)﹣g(x)
(1)求函數(shù)h(x)的定義域,判斷h(x)的奇偶性并說(shuō)明理由
(2)解不等式h(x)>0.

查看答案和解析>>

同步練習(xí)冊(cè)答案