【題目】已知AB是焦距為的橢圓的上、下頂點(diǎn),P是橢圓上異于頂點(diǎn)的任意一點(diǎn),直線PAPB的斜率之積為.

1)求橢圓的方程;

2)若C,D分別是橢圓的左、右頂點(diǎn),動點(diǎn)M滿足,連接CM交橢圓于點(diǎn)E,試問:x軸上是否存在定點(diǎn)T,使得恒成立?若存在,求出點(diǎn)T坐標(biāo),若不存在,請說明理由.

【答案】(1)(2)存在定點(diǎn)滿足題意

【解析】

1)設(shè),代入橢圓方程可得,,,又由,進(jìn)而求得,從而求得橢圓方程;

2)設(shè),法一:設(shè),C,E,M共線得,則,E在橢圓上,可得,代入中求解即可;

法二:設(shè)直線,則,聯(lián)立可得,,代入中求解即可

1)由題,,設(shè),

,所以,

所以,

所以,

,

所以,

所以橢圓的方程為

2)存在,

設(shè)其坐標(biāo)為,由題,,

法一:設(shè),

C,E,M共線得,即,所以,

E在橢圓上,得,,

因?yàn)?/span>,,

所以恒成立,

所以,即存在定點(diǎn)滿足題意

法二:設(shè)直線,其中,

,

聯(lián)立,

,

,所以,

所以,,

恒成立,

所以,即存在定點(diǎn)滿足題意

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠對一批產(chǎn)品進(jìn)行了抽樣檢測.右圖是根據(jù)抽樣檢測后的產(chǎn)品凈重(單位:克)數(shù)據(jù)繪制的頻率分布直方圖,其中產(chǎn)品凈重的范圍是[96106],樣本數(shù)據(jù)分組為[96,98),[98,100),[100,102),[102104),[104,106],已知樣本中產(chǎn)品凈重小于100克的個數(shù)是36,則樣本中凈重大于或等于98克并且小于104克的產(chǎn)品的個數(shù)是( ).

A. 90B. 75C. 60D. 45

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】棱長為1的正方體中,點(diǎn)分別在線段、上運(yùn)動(不包括線段端點(diǎn)),且.以下結(jié)論:①;②若點(diǎn)、分別為線段、的中點(diǎn),則由線確定的平面在正方體上的截面為等邊三角形;③四面體的體積的最大值為;④直線與直線的夾角為定值.其中正確的結(jié)論為______.(填序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知:函數(shù),數(shù)列,總有;

1)求的通項公式;

2)設(shè)是數(shù)列的前項和,且,求的取值范圍;

3)若數(shù)列滿足:①的子數(shù)列(即中每一項都是的項,且按在中的順序排列);②為無窮等比數(shù)列,它的各項和為,這樣的數(shù)列是否存在?若存在,求出所有符合條件的數(shù)列.寫出它的通項公式,并證明你的結(jié)論;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓與直線交于兩點(diǎn),不與軸垂直,圓.

(1)若點(diǎn)在橢圓上,點(diǎn)在圓上,求的最大值;

(2)若過線段的中點(diǎn)且垂直于的直線過點(diǎn),求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,底面為正三角形,底面,點(diǎn)在線段上,平面平面.

(1)請指出點(diǎn)的位置,并給出證明;

(2)若,求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四個命題:

經(jīng)過定點(diǎn)的直線都可以用方程表示;

經(jīng)過定點(diǎn)的直線都可以用方程表示;

不經(jīng)過原點(diǎn)的直線都可以用方程表示;

經(jīng)過任意兩個不同的點(diǎn)的直線都可以用方程表示,

其中真命題的個數(shù)為(

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),曲線處的切線交軸于點(diǎn)

(1)求的值;

(2)若對于內(nèi)的任意兩個數(shù),當(dāng)時,恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在平面直角坐標(biāo)系中,動點(diǎn)與兩定點(diǎn)連線的斜率之積為,記點(diǎn)的軌跡為曲線.

(1)求曲線的方程;

(2)若過點(diǎn)的直線與曲線交于兩點(diǎn),曲線上是否存在點(diǎn)使得四邊形為平行四邊形?若存在,求直線的方程,若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案