精英家教網 > 高中數學 > 題目詳情
定義在R上的函數f(x)滿足:對任意α,β∈R,總有f(α+β)-[f(α)+f(β)]=2014,則下列說法正確的是( 。
A、f(x)+1是奇函數
B、f(x)-1是奇函數
C、f(x)+2014是奇函數
D、f(x)-2014是奇函數
考點:函數奇偶性的性質
專題:函數的性質及應用
分析:取α=β=0,得f(0)=-2014;再取α=x,β=-x,代入整理可得f(-x)+2014=-[f(x)-f(0)]=-[f(x)+2014],即可得到結論.
解答: 解:取α=β=0,得f(0)=-2014,
取α=x,β=-x,f(0)-f(x)-f(-x)=2014,
即f(-x)+2014=-[f(x)-f(0)]=-[f(x)+2014]
故函數f(x)+2014是奇函數.
故選:C.
點評:本題考查函數奇偶性的判斷,解決抽象函數奇偶性的判斷問題時采用賦值法是關鍵,屬基礎題
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=|x|,則下列說法正確的是( 。
A、f(x)是奇函數,且在(0,+∞)上是增函數
B、f(x)是奇函數,且在(0,+∞)上是減函數
C、f(x)是偶函數,且在(0,+∞)上是增函數
D、f(x)是偶函數,且在(0,+∞)上是減函數

查看答案和解析>>

科目:高中數學 來源: 題型:

設(2-x)5=a0+a1x+a2x2…+a5x5,那么
a0+a2+a4
a1+a3+a5
的值為( 。
A、-
61
60
B、-
122
121
C、-
244
241
D、-1

查看答案和解析>>

科目:高中數學 來源: 題型:

“x>3”是“x2-5x+6>0”的( 。
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分又不必要條件

查看答案和解析>>

科目:高中數學 來源: 題型:

空間有四個點,其中任意三點,都不在同一條直線上,那么它們可確定( 。
A、三個或兩個平面
B、四個或三個平面
C、三個或一個平面
D、四個或一個平面

查看答案和解析>>

科目:高中數學 來源: 題型:

圓x2+y2-2x=0的圓心坐標和半徑分別為( 。
A、(1,0),1
B、(0,1),1
C、(-1,0),1
D、(1,0),2

查看答案和解析>>

科目:高中數學 來源: 題型:

已知正項等比數列{an}滿足a2014=a2013+2a2012,且
anam
=4a1,則6(
1
m
+
1
n
)的最小值為( 。
A、
2
3
B、2
C、4
D、6

查看答案和解析>>

科目:高中數學 來源: 題型:

若函數y=x3-3x在(a,6-a2)上有最值,求a的取范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,在直三棱柱ABC-A1B1C1中,D、E分別為AA1、CC1的中點,AC⊥BE,點F在線段AB上,且AB=4AF,若M為線段BE上一點,試確定M在線段BE上的位置,使得C1D∥平面B1FM.

查看答案和解析>>

同步練習冊答案