【題目】已知中心在原點,焦點在x軸上的橢圓C的離心率為,且經(jīng)過點M(1,),過點P(2,1)的直線l與橢圓C相交于不同的兩點A,B.
(1)求橢圓C的方程;
(2)是否存在直線l,滿足?若存在,求出直線l的方程;若不存在,請說明理由.
【答案】(1);(2)存在,.
【解析】試題分析(1)先設(shè)橢圓的標(biāo)準(zhǔn)方程,將點代入得到一個方程,根據(jù)離心率得到一個關(guān)系式,再由可得到的值,進(jìn)而得到橢圓的方程.(2)假設(shè)存在直線滿足條件,設(shè)直線方程為,然后與橢圓方程聯(lián)立消去得到一元二次方程,且方程一定有兩根,故應(yīng)大于得到的范圍,進(jìn)而可得到兩根之和、兩根之積的表達(dá)式,再表示出,再代入關(guān)系式可確定的值,從而得解.
試題解析:(1)設(shè)橢圓C的方程為,
由題意得解得.故橢圓C的方程為.
(2)若存在直線l滿足條件,由題意可設(shè)直線l的方程為,由
得.
因為直線l與橢圓C相交于不同的兩點A,B,
設(shè)A,B兩點的坐標(biāo)分別為,
所以
整理得,解得.
又,,且
即,
所以,
即.
所以,
解得.
所以k=.于是存在直線l滿足條件,
其方程為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】孝感市旅游局為了了解雙峰山景點在大眾中的熟知度,從年齡在15~65歲的人群中隨機抽取n人進(jìn)行問卷調(diào)查,把這n人按年齡分成5組:第一組[15,25),第二組[25,35),第三組[35,45),第四組[45,55),第五組[55,65],得到的樣本的頻率分布直方圖如右:
調(diào)查問題是“雙峰山國家森林公園是幾A級旅游景點?”每組中回答正確的人數(shù)及回答正確的人數(shù)占本組的頻率的統(tǒng)計結(jié)果如下表.
組號 | 分組 | 回答正確的人數(shù) | 回答正確的人數(shù)占本組的頻率 |
第1組 | [15,25) | 5 | 0.5 |
第2組 | [25,35) | 18 | x |
第3組 | [35,45) | y | 0.9 |
第4組 | [45,55) | 9 | a |
第5組 | [55,65] | 7 | b |
(1)分別求出n,x,y的值;
(2)從第2,3,4組回答正確的人中用分層抽樣的方法抽取6人,求第2,3,4組每組各抽取多少人;
(3)在(2)抽取的6人中隨機抽取2人,求所抽取的兩人來自不同年齡組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: (a>b>0),四點P1(1,1),P2(0,1),P3(–1, ),P4(1, )中恰有三點在橢圓C上.
(1)求C的方程;
(2)設(shè)直線l不經(jīng)過P2點且與C相交于A,B兩點.若直線P2A與直線P2B的斜率的和為–1,證明:l過定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某運動員每次投籃命中的概率都為40%.現(xiàn)采用隨機模擬的方法估計該運動員三次投籃恰有兩次命中的概率:先由計算器算出0到9之間取整數(shù)值的隨機數(shù),指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三個隨機數(shù)為一組,代表三次投籃的結(jié)果.經(jīng)隨機模擬產(chǎn)生了20組隨機數(shù):
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
據(jù)此估計,該運動員三次投籃恰有兩次命中的概率為( )
A.0.35B.0.25C.0.20D.0.15
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知橢圓C:的左右焦點分別為,,直線l:與橢圓C交于A,B兩點為坐標(biāo)原點.
若直線l過點,且十,求直線l的方程;
若以AB為直徑的圓過點O,點P是線段AB上的點,滿足,求點P的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某生物興趣小組對冬季晝夜溫差與反季節(jié)新品種大豆發(fā)芽數(shù)之間的關(guān)系進(jìn)行研究,他們分別記錄了月日至月日每天的晝夜溫差與實驗室每天顆種子的發(fā)芽數(shù),得到以下表格
該興趣小組確定的研究方案是:先從這組數(shù)據(jù)中選取組數(shù)據(jù),然后用剩下的組數(shù)據(jù)求線性回歸方程,再用被選取的組數(shù)據(jù)進(jìn)行檢驗.
(1) 求統(tǒng)計數(shù)據(jù)中發(fā)芽數(shù)的平均數(shù)與方差;
(2) 若選取的是月日與月日的兩組數(shù)據(jù),請根據(jù)月日至月日的數(shù)據(jù),求出發(fā)芽數(shù)關(guān)于溫差的線性回歸方程,若由線性回歸方程得到的估計數(shù)據(jù)與所選取的檢驗數(shù)據(jù)的誤差不超過,則認(rèn)為得到的線性回歸方程是可靠的,問得到的線性回歸方程是否可靠? 附:線性回歸方程中斜率和截距最小二乘估法計算公式:
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓,橢圓的長軸長為8,離心率為.
求橢圓方程;
橢圓內(nèi)接四邊形ABCD的對角線交于原點,且,求四邊形ABCD周長的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某水利部門擬在黃河沿岸修建一所水庫,為大致了解甲、乙兩地的降水情況,隨機選取汛期月份中的一周,將這一周內(nèi)每日的降水量數(shù)據(jù)進(jìn)行統(tǒng)計(單位:),制成如圖所示的莖葉圖.考慮以下結(jié)論:
①甲地本周的平均降水量低于乙地本周的平均降水量;
②甲地本周的中位降水量高于乙地本周的平均降水量;
③甲地本周的降水量眾數(shù)大于乙地本周的降水量的中位數(shù);
④甲地本周降水量的標(biāo)準(zhǔn)差大于乙地本周降水量的標(biāo)準(zhǔn)差.
其中根據(jù)莖葉圖能得到的不恰當(dāng)?shù)慕y(tǒng)計結(jié)論的編號為( )
A.①③B.②④C.①④D.②③
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com