【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程.

(Ⅰ)求直線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;

(Ⅱ)若直線與曲線交于兩點(diǎn),求的大小.

【答案】(Ⅰ)直線的極坐標(biāo)方程為;曲線的直角坐標(biāo)方程為;(Ⅱ).

【解析】

(Ⅰ)通過消參即得直線的普通方程,再通過直角坐標(biāo)和極坐標(biāo)的互化,即可得到直線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;

(Ⅱ)設(shè)的極坐標(biāo)分別為,,根據(jù)極角的的意義,則:,聯(lián)立直線的極坐標(biāo)方程和圓的極坐標(biāo)方程,消去,計(jì)算即可得解.

(Ⅰ)由得直線的普通方程為,

又因?yàn)?/span>

所以直線的極坐標(biāo)方程為.

曲線的極坐標(biāo)方程為,

,,

即曲線的直角坐標(biāo)方程為.

(Ⅱ)設(shè)的極坐標(biāo)分別為,,

,

消去,

化為,即,

不妨設(shè),即,

所以,或

所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在極坐標(biāo)系中,曲線C1是以C140)為圓心的半圓,曲線C2是以為圓心的圓,曲線C1、C2都過極點(diǎn)O

1)分別寫出半圓C1,C2的極坐標(biāo)方程;

2)直線l與曲線C1,C2分別交于M、N兩點(diǎn)(異于極點(diǎn)O),PC2上的動點(diǎn),求△PMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過橢圓的焦點(diǎn),且橢圓的中心關(guān)于直線的對稱點(diǎn)的橫坐標(biāo)為為橢圓的焦距).

1)求橢圓的方程;

2)是否存在過點(diǎn),且交橢圓于點(diǎn)的直線,滿足.若存在,求直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

如圖,平行四邊形中,,沿折起到的位置,使平面平面

)求證:

)求三棱錐的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠的,,三個(gè)不同車間生產(chǎn)同一產(chǎn)品的數(shù)量(單位:件)如下表所示.質(zhì)檢人員用分層抽樣的方法從這些產(chǎn)品中共抽取6件樣品進(jìn)行檢測:

車間

數(shù)量

50

150

100

(1)求這6件樣品中來自,,各車間產(chǎn)品的數(shù)量;

(2)若在這6件樣品中隨機(jī)抽取2件進(jìn)行進(jìn)一步檢測,求這2件產(chǎn)品來自相同車間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某語文報(bào)社為研究學(xué)生課外閱讀時(shí)間與語文考試中的作文分?jǐn)?shù)的關(guān)系,隨機(jī)調(diào)查了本市某中學(xué)高三文科班名學(xué)生每周課外閱讀時(shí)間(單位:小時(shí))與高三下學(xué)期期末考試中語文作文分?jǐn)?shù),數(shù)據(jù)如下表:

1

2

3

4

5

6

38

40

43

45

50

54

1)根據(jù)上述數(shù)據(jù),求出高三學(xué)生語文作文分?jǐn)?shù)與該學(xué)生每周課外閱讀時(shí)間的線性回歸方程,并預(yù)測某學(xué)生每周課外閱讀時(shí)間為小時(shí)時(shí)其語文作文成績;

2)從這人中任選人,這人中至少有人課外閱讀時(shí)間不低于小時(shí)的概率.

參考公式:,其中

參考數(shù)據(jù):,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若拋物線的焦點(diǎn)為是坐標(biāo)原點(diǎn),為拋物線上的一點(diǎn),向量軸正方向的夾角為60°,且的面積為.

1)求拋物線的方程;

2)若拋物線的準(zhǔn)線與軸交于點(diǎn),點(diǎn)在拋物線上,求當(dāng)取得最大值時(shí),直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓的焦點(diǎn)為,過的直線兩點(diǎn),過作與軸垂直的直線,又知點(diǎn),直線記為交于點(diǎn).設(shè),已知當(dāng)時(shí),

(Ⅰ)求橢圓的方程;

(Ⅱ)求證:無論如何變化,點(diǎn)的橫坐標(biāo)是定值,并求出這個(gè)定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在中, 分別為的中點(diǎn),點(diǎn)為線段上的一點(diǎn),將沿折起到的位置,使,如圖2.

(1)求證:

(2)線段上是否存在點(diǎn),使平面?說明理由.

查看答案和解析>>

同步練習(xí)冊答案