(本小題滿分12分)設數(shù)列的前項和為.已知,,
(Ⅰ)設,求數(shù)列的通項公式;
(Ⅱ)若,求的取值范圍.

(Ⅰ),.(Ⅱ)的取值范圍是

解析試題分析:解:(Ⅰ)依題意,,即
由此得
因此,所求通項公式為
,.……      4分
(Ⅱ)由①知,
于是,當時,


,……      6分

,
時,
.                      ……  8分

綜上,所求的的取值范圍是.……10分
考點:等比數(shù)列的通項公式;最值。
點評:本題第一小題要應用到一般結(jié)論:。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知是單調(diào)遞增的等差數(shù)列,首項,前項和為,數(shù)列是等比數(shù)列,首項
(1)求的通項公式.
(2)設,數(shù)列的前項和為,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設數(shù)列滿足:
(1)求證:;
(2)若,對任意的正整數(shù)恒成立,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)已知數(shù)列為等差數(shù)列,且
(1)求數(shù)列的通項公式;
(2)證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知,點在函數(shù)的圖象上,其中
(1)證明數(shù)列是等比數(shù)列;
(2)設,求及數(shù)列的通項;
(3)記,求數(shù)列的前項和。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分16分)數(shù)列的前項和記為,且滿足
(1)求數(shù)列的通項公式;
(2)求和;
(3)設有項的數(shù)列是連續(xù)的正整數(shù)數(shù)列,并且滿足:

問數(shù)列最多有幾項?并求這些項的和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設數(shù)列的前n項和為Sn=2n2,為等比數(shù)列,且
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)設,求數(shù)列n項和Tn.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)已知數(shù)列滿足.
⑴求證:數(shù)列是等比數(shù)列,并寫出數(shù)列的通項公式;
⑵若數(shù)列滿足,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)在數(shù)列中,是數(shù)列項和,,當
(I)求證:數(shù)列是等差數(shù)列;
(II)設求數(shù)列的前項和
(III)是否存在自然數(shù),使得對任意自然數(shù),都有成立?若存在,求出的最大值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案