設(shè)a是實(shí)數(shù),函數(shù)f(x)=2x2+(x-a)•|x-a|,求f(x)的最小值.
考點(diǎn):函數(shù)最值的應(yīng)用
專(zhuān)題:
分析:分x≥a和x<a兩種情況來(lái)討論去絕對(duì)值,再對(duì)每一段分別求最小值,借助二次函數(shù)的對(duì)稱軸及單調(diào)性.最后綜合即可.
解答: 解:當(dāng)x≥a時(shí),f(x)=3x2-2ax+a2,∴f(x)min=
f(a),a≥0
f(
a
3
),a<0
=
2a2,a≥0
2
3
a2,a<0
,
如圖所示:

當(dāng)x≤a時(shí),f(x)=x2+2ax-a2,
∴f(x)min=
f(-a),a≥0
f(a),a<0
=
-2a2,a≥0
2a2,a<0


綜上所述:f(x)min=
-2a2,a≥0
2
3
a2,a<0
點(diǎn)評(píng):本題考查了分段函數(shù)的最值問(wèn)題.分段函數(shù)的最值的求法是先對(duì)每一段分別求最值,最后綜合最大的為整個(gè)函數(shù)的最大值,最小的為整個(gè)函數(shù)的最小值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
a
x
+lnx(a∈R).
(Ⅰ)討論函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)a=1時(shí),求函數(shù)f(x)+2x的極值;
(Ⅲ)若f(x)<x2在x∈(1,+∞)時(shí)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于函數(shù)f(x)=a-
2
2x+1
(a∈R)
(1)是否存在實(shí)數(shù)a使函數(shù)f(x)為奇函數(shù)?
(2)證明函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
a
x
+lnx(a∈R).
(Ⅰ)當(dāng)a=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)在(Ⅰ)的條件下求函數(shù)f(x)+2x的極值;
(Ⅲ)若f(x)<
1
2
x在x∈(1,+∞)時(shí)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy上的區(qū)域D由不等式組
x-y-2≤0
x+2y-4≥0
2y-3≤0
給定.若M(x,y)為D上的動(dòng)點(diǎn),點(diǎn)N的坐標(biāo)為(1,3),則z=
OM
ON
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=alnx+
1
2
x2-x(a∈R)
(Ⅰ)若x=2是函數(shù)f(x)的一個(gè)極值點(diǎn),求f(x)的最小值;
(Ⅱ)對(duì)?x∈(e,+∞),f(x)-ax>0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)的定義域?yàn)椋?2,2),導(dǎo)函數(shù)為f′(x)=x2+cosx且f(0)=0,則滿足f(1+x)+f(x2-x)>0的實(shí)數(shù)x的集合是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

cos(-
16
3
π)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算1.5 -
1
3
+80.25×
42
+(
32
×
3
6-
(-
2
3
)
2
3
=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案