已知橢圓:()過(guò)點(diǎn),且橢圓的離心率為.
(1)求橢圓的方程;
(2)若動(dòng)點(diǎn)在直線上,過(guò)作直線交橢圓于兩點(diǎn),且為線段中點(diǎn),再過(guò)作直線.求直線是否恒過(guò)定點(diǎn),如果是則求出該定點(diǎn)的坐標(biāo),不是請(qǐng)說(shuō)明理由。
(1);(2)直線恒過(guò)定點(diǎn).
解析試題分析:本題主要考查橢圓的標(biāo)準(zhǔn)方程以及幾何性質(zhì)、直線的標(biāo)準(zhǔn)方程、直線與橢圓的位置關(guān)系、韋達(dá)定理等基礎(chǔ)知識(shí),考查學(xué)生的分析問(wèn)題解決問(wèn)題的能力、轉(zhuǎn)化能力、計(jì)算能力.第一問(wèn),利用點(diǎn)在橢圓上和離心率得到方程組,解出a和b的值,從而得到橢圓的標(biāo)準(zhǔn)方程;第二問(wèn),需要對(duì)直線MN的斜率是否存在進(jìn)行討論,(。┤舸嬖邳c(diǎn)P在MN上,設(shè)出直線MN的方程,由于直線MN與橢圓相交,所以?xún)煞匠搪?lián)立,得到兩根之和,結(jié)合中點(diǎn)坐標(biāo)公式,得到直線MN的斜率,由于直線MN與直線垂直,從而得到直線的斜率,因?yàn)橹本也過(guò)點(diǎn)P,寫(xiě)出直線的方程,經(jīng)過(guò)整理,即可求出定點(diǎn),(ⅱ)若直線MN的斜率不存在,則直線MN即為,而直線為x軸,經(jīng)驗(yàn)證直線,也過(guò)上述定點(diǎn),所以綜上所述,有定點(diǎn).
(1)因?yàn)辄c(diǎn)在橢圓上,所以, 所以, 1分
因?yàn)闄E圓的離心率為,所以,即, 2分
解得, 所以橢圓的方程為. 4分
(2)設(shè),,
①當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為,,,
由得,
所以, 因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/67/e/nicir3.png" style="vertical-align:middle;" />為中點(diǎn),所以,即.
所以, 8分
因?yàn)橹本,所以,所以直線的方程為,
即 ,顯然直線恒過(guò)定點(diǎn). 10分
②當(dāng)直線的斜率不存在時(shí),直線的方程為,此時(shí)直線為軸,也過(guò)點(diǎn).
綜上所述直線恒過(guò)定點(diǎn). 12分
考點(diǎn):橢圓的標(biāo)準(zhǔn)方程以及幾何性質(zhì)、直線的標(biāo)準(zhǔn)方程、直線與橢圓的位置關(guān)系、韋達(dá)定理.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知點(diǎn)是橢圓上任一點(diǎn),點(diǎn)到直線的距離為,到點(diǎn)的距離為,且.直線與橢圓交于不同兩點(diǎn)、(,都在軸上方) ,且.
(1)求橢圓的方程;
(2)當(dāng)為橢圓與軸正半軸的交點(diǎn)時(shí),求直線方程;
(3)對(duì)于動(dòng)直線,是否存在一個(gè)定點(diǎn),無(wú)論如何變化,直線總經(jīng)過(guò)此定點(diǎn)?若存在,求出該定點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知雙曲線C:離心率是,過(guò)點(diǎn),且右支上的弦過(guò)右焦點(diǎn).
(1)求雙曲線C的方程;
(2)求弦的中點(diǎn)的軌跡E的方程;
(3)是否存在以為直徑的圓過(guò)原點(diǎn)O?,若存在,求出直線的斜率k 的值.若不存在,則說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(2013·上海高考)如圖,已知雙曲線C1:-y2=1,曲線C2:|y|=|x|+1.P是平面內(nèi)一點(diǎn).若存在過(guò)點(diǎn)P的直線與C1,C2都有共同點(diǎn),則稱(chēng)P為“C1-C2型點(diǎn)”.
(1)在正確證明C1的左焦點(diǎn)是“C1-C2型點(diǎn)”時(shí),要使用一條過(guò)該焦點(diǎn)的直線,試寫(xiě)出一條這樣的直線的方程(不要求驗(yàn)證).
(2)設(shè)直線y=kx與C2有公共點(diǎn),求證|k|>1,進(jìn)而證明原點(diǎn)不是“C1-C2型點(diǎn)”.
(3)求證:圓x2+y2=內(nèi)的點(diǎn)都不是“C1-C2型點(diǎn)”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系xOy中,F(xiàn)是拋物線C:x2=2py(p>0)的焦點(diǎn),M是拋物線C上位于第一象限內(nèi)的任意一點(diǎn),過(guò)M,F(xiàn),O三點(diǎn)的圓的圓心為Q,點(diǎn)Q到拋物線C的準(zhǔn)線的距離為.
(1)求拋物線C的方程;
(2)是否存在點(diǎn)M,使得直線MQ與拋物線C相切于點(diǎn)M?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知、為橢圓的左右焦點(diǎn),點(diǎn)為其上一點(diǎn),且有
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)的直線與橢圓交于、兩點(diǎn),過(guò)與平行的直線與橢圓交于、兩點(diǎn),求四邊形的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系中,已知?jiǎng)狱c(diǎn)到點(diǎn)的距離為,到軸的距離為,且.
(1)求點(diǎn)的軌跡的方程;
(2) 若直線斜率為1且過(guò)點(diǎn),其與軌跡交于點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè):的準(zhǔn)線與軸交于點(diǎn),焦點(diǎn)為;橢圓以為焦點(diǎn),離心率.設(shè)是的一個(gè)交點(diǎn).
(1)當(dāng)時(shí),求橢圓的方程.
(2)在(1)的條件下,直線過(guò)的右焦點(diǎn),與交于兩點(diǎn),且等于的周長(zhǎng),求的方程.
(3)求所有正實(shí)數(shù),使得的邊長(zhǎng)是連續(xù)正整數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(2013•浙江)如圖,點(diǎn)P(0,﹣1)是橢圓C1:+=1(a>b>0)的一個(gè)頂點(diǎn),C1的長(zhǎng)軸是圓C2:x2+y2=4的直徑,l1,l2是過(guò)點(diǎn)P且互相垂直的兩條直線,其中l(wèi)1交圓C2于A、B兩點(diǎn),l2交橢圓C1于另一點(diǎn)D.
(1)求橢圓C1的方程;
(2)求△ABD面積的最大值時(shí)直線l1的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com