【題目】(本小題12分)如圖,在海岸線一側有一休閑游樂場,游樂場的前一部分邊界為曲線段,該曲線段是函數(shù),的圖像,圖像的最高點為.邊界的中間部分為長千米的直線段,且.游樂場的后一部分邊界是以為圓心的一段圓弧.
(1)求曲線段的函數(shù)表達式;
(2)曲線段上的入口距海岸線最近距離為千米,現(xiàn)準備從入口修一條筆直的景觀路到,求景觀路長;
(3)如圖,在扇形區(qū)域內(nèi)建一個平行四邊形休閑區(qū),平行四邊形的一邊在海岸線上,一邊在半徑上,另外一個頂點在圓弧上,且,求平行四邊形休閑區(qū)面積的最大值及此時的值.
科目:高中數(shù)學 來源: 題型:
【題目】某大型娛樂場有兩種型號的水上摩托,管理人員為了了解水上摩托的使用及給娛樂城帶來的經(jīng)濟收入情況,對該場所最近6年水上摩托的使用情況進行了統(tǒng)計,得到相關數(shù)據(jù)如表:
(1)請根據(jù)以上數(shù)據(jù),用最小二乘法求水上摩托使用率關于年份代碼的線性回歸方程,并預測該娛樂場2018年水上摩托的使用率;
(2)隨著生活水平的提高,外出旅游的老百姓越來越多,該娛樂場根據(jù)自身的發(fā)展需要,準備重新購進一批水上摩托,其型號主要是目前使用的Ⅰ型、Ⅱ型兩種,每輛價格分別為1萬元、1.2萬元.根據(jù)以往經(jīng)驗,每輛水上摩托的使用年限不超過四年.娛樂場管理部對已經(jīng)淘汰的兩款水上摩托的使用情況分別抽取了50輛進行統(tǒng)計,使用年限如條形圖所示:
已知每輛水上摩托從購入到淘汰平均年收益是0.8萬元,若用頻率作為概率,以每輛水上摩托純利潤(純利潤=收益-購車成本)的期望值為參考值,則該娛樂場的負責人應該選購Ⅰ型水上摩托還是Ⅱ型水上摩托?
附:回歸直線方程為,其中, .參考數(shù)據(jù),
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=sin2x﹣cos2x﹣2sinx cosx(x∈R).
(Ⅰ)求f()的值.
(Ⅱ)求f(x)的最小正周期及單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù), ,其中為自然對數(shù)的底數(shù).
(1)若,求曲線在點處的切線斜率;
(2)證明:當時,函數(shù)有極小值,且極小值大于.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知曲線,曲線的左右焦點是, ,且就是的焦點,點是與的在第一象限內(nèi)的公共點且,過的直線分別與曲線、交于點和.
(Ⅰ)求點的坐標及的方程;
(Ⅱ)若與面積分別是、,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖, 為圓的直徑,點, 在圓上, ,矩形和圓所在的平面互相垂直,已知, .
(Ⅰ)求證:平面平面;
(Ⅱ)當的長為何值時,二面角的大小為.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知為自然對數(shù)的底數(shù), ).
(1)設為的導函數(shù),證明:當時, 的最小值小于0;
(2)若恒成立,求符合條件的最小整數(shù)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2017年4月1日,新華通訊社發(fā)布:國務院決定設立河北雄安新區(qū).消息一出,河北省雄縣、容城、安新3縣及周邊部分區(qū)域迅速成為海內(nèi)外高度關注的焦點.
(1)為了響應國家號召,北京市某高校立即在所屬的8個學院的教職員工中作了“是否愿意將學校整體搬遷至雄安新區(qū)”的問卷調(diào)查,8個學院的調(diào)查人數(shù)及統(tǒng)計數(shù)據(jù)如下:
調(diào)查人數(shù)() | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 |
愿意整體搬遷人數(shù)() | 8 | 17 | 25 | 31 | 39 | 47 | 55 | 66 |
請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出變量關于變量的線性回歸方程保留小數(shù)點后兩位有效數(shù)字);若該校共有教職員工2500人,請預測該校愿意將學校整體搬遷至雄安新區(qū)的人數(shù);
(2)若該校的8位院長中有5位院長愿意將學校整體搬遷至雄安新區(qū),現(xiàn)該校擬在這8位院長中隨機選取4位院長組成考察團赴雄安新區(qū)進行實地考察,記為考察團中愿意將學校整體搬遷至雄安新區(qū)的院長人數(shù),求的分布列及數(shù)學期望.
參考公式及數(shù)據(jù): .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓:()與直線:相切,設點為圓上一動點,軸于,且動點滿足,設動點的軌跡為曲線.
(1)求曲線的方程;
(2)直線與直線垂直且與曲線交于,兩點,求面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com