角α頂點在坐標原點O,始邊與x軸的非負半軸重合,tanα=-2,點P在α的終邊上,點Q(-3,-4),則
OP
OQ
夾角余弦值為( 。
A、-
5
5
B、
11
5
25
C、
5
5
或-
5
5
D、
11
5
25
或-
11
5
5
考點:平面向量數(shù)量積的運算,任意角的三角函數(shù)的定義
專題:平面向量及應(yīng)用
分析:由題可得P在直線y=-2x上,可取P(-3,6)或P(3,-6),進而可得
OP
=(-3,6),或
OP
=(3,-6),分別代入夾角公式可得.
解答: 解:∵tanα=-2,∴直線OP的斜率為-2,
故P在直線y=-2x上,可取P(-3,6)或P(3,-6),
OP
=(-3,6),或
OP
=(3,-6),又
OQ
=(-3,-4),
故當
OP
=(-3,6)時,cos<
OP
,
OQ

=
OP
OQ
|
OP
||
OQ
|
=
-3×(-3)+6×(-4)
(-3)2+62
(-3)2+(-4)2
=-
5
5

OP
=(3,-6)時,cos<
OP
,
OQ
>=
OP
OQ
|
OP
||
OQ
|
=
3×(-3)+(-6)×(-4)
32+(-6)2
(-3)2+(-4)2
=
5
5

OP
OQ
夾角余弦值為:
5
5
-
5
5

故選:C
點評:本題考查平面向量的數(shù)量積的運算,涉及三角函數(shù)的定義和分類討論的思想,屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線y2=4x的焦點F作垂直于對稱軸的直線交拋物線于M,N兩點,則以MN為直徑的圓的方程是( 。
A、(x-1)2+y2=4
B、(x+1)2+y2=4
C、(x-2)2+y2=4
D、(x+2)2+y2=4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列1
1
3
,3
2
5
,5
3
7
,7
4
9
,…
的一個通項公式為an=(  )
A、
4n2+n-1
2n+1
B、
2n2-n
2n+1
C、
4n2+5n+1
2n+1
D、
4n2-3n+1
2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=asinωx-cosωx的相鄰兩個零點的距離為π,且它的一條對稱軸為x=
2
3
π,則f(-
π
3
)等于( 。
A、-2
B、-
3
C、
3
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={-1,0,1},B={y|y=sinπx,x∈A},則A∩B=( 。
A、{-1}B、{0}
C、{1}D、∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)z=1-i(i是虛數(shù)單位),則
1
z
=(  )
A、
1
2
-
1
2
i
B、
1
2
+
1
2
i
C、
1
2
+
3
2
i
D、
1
2
-
3
2
i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

抽樣調(diào)查表明,某校高三學(xué)生成績(總分750分)ξ近似服從正態(tài)分布,平均成績?yōu)?00分.已知P(400<ξ<450)=0.3,則P(550<ξ<600)=( 。
A、0.7B、0.5
C、0.3D、0.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和為Sn=3n-n2,n∈N*
(Ⅰ)求通項公式an;
(Ⅱ)設(shè)bn=2n,求數(shù)列{anbn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC的三個內(nèi)角A,B,C對應(yīng)邊分別為a,b,c.若A,B,C成等差數(shù)列,求證:
c
a+b
+
a
b+c
=1.

查看答案和解析>>

同步練習(xí)冊答案