【題目】現(xiàn)有4個人去參加娛樂活動,該活動有甲、乙兩個游戲可供參加者選擇.為增加趣味性,約定:每個人通過擲一枚質(zhì)地均勻的骰子決定自己去參加哪個游戲,擲出點數(shù)為1或2的人去參加甲游戲,擲出點數(shù)大于2的人去參加乙游戲.
(1)求這4個人中恰有2人去參加甲游戲的概率;
(2)求這4個人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)的概率;
(3)用X,Y分別表示這4個人中去參加甲、乙游戲的人數(shù),記ξ=|X﹣Y|,求隨機變量ξ的分布列與數(shù)學(xué)期望Eξ.
【答案】
(1)解:依題意,這4個人中,每個人去參加甲游戲的概率為 ,去參加乙游戲的人數(shù)的概率為
設(shè)“這4個人中恰有i人去參加甲游戲”為事件Ai(i=0,1,2,3,4),∴P(Ai)=
這4個人中恰有2人去參加甲游戲的概率為P(A2)=
(2)解:設(shè)“這4個人中去參加甲游戲的人數(shù)大于去參加乙游戲”為事件B,則B=A3∪A4,
∴P(B)=P(A3)+P(A4)=
(3)解:ξ的所有可能取值為0,2,4,由于A1與A3互斥,A0與A4互斥,故P(ξ=0)=P(A2)=
P(ξ=2)=P(A1)+P(A3)= ,P(ξ=4)=P(A0)+P(A4)=
∴ξ的分布列是
ξ | 0 | 2 | 4 |
P |
數(shù)學(xué)期望Eξ=
【解析】依題意,這4個人中,每個人去參加甲游戲的概率為 ,去參加乙游戲的人數(shù)的概率為 ,設(shè)“這4個人中恰有i人去參加甲游戲”為事件Ai(i=0,1,2,3,4),故P(Ai)= (1)這4個人中恰有2人去參加甲游戲的概率為P(A2);(2)設(shè)“這4個人中去參加甲游戲的人數(shù)大于去參加乙游戲”為事件B,則B=A3∪A4 , 利用互斥事件的概率公式可求;(3)ξ的所有可能取值為0,2,4,由于A1與A3互斥,A0與A4互斥,求出相應(yīng)的概率,可得ξ的分布列與數(shù)學(xué)期望.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)fn(x)=﹣1+x+ + +…+ (x∈R,n∈N+),證明:
(1)對每個n∈N+ , 存在唯一的x∈[ ,1],滿足fn(xn)=0;
(2)對于任意p∈N+ , 由(1)中xn構(gòu)成數(shù)列{xn}滿足0<xn﹣xn+p< .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為調(diào)查某地區(qū)老年人是否需要志愿者提供幫助,用簡單隨機抽樣方法從該地區(qū)調(diào)查了500位老人,結(jié)果如下:
(Ⅰ)估計該地區(qū)老年人中,需要志愿提供幫助的老年人的比例;
(Ⅱ)能否有99℅的把握認(rèn)為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關(guān)?
(Ⅲ)根據(jù)(Ⅱ)的結(jié)論,能否提出更好的調(diào)查辦法來估計該地區(qū)的老年人中,需要志愿者提供幫助的老年人的比例?說明理由。
是否需要志愿者 性別 | 男 | 女 |
需要 | 40 | 30 |
不需要 | 160 | 270 |
參考數(shù)據(jù):
| 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)有小學(xué)150所,中學(xué)75所,大學(xué)25所.先采用分層抽樣的方法從這些學(xué)校中抽取30所學(xué)校對學(xué)生進(jìn)行視力調(diào)查,應(yīng)從小學(xué)中抽取 18 所學(xué)校,中學(xué)中抽取所學(xué)校.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一項拋擲骰子的過關(guān)游戲規(guī)定:在第關(guān)要拋擲一顆骰子次,如里這次拋擲所出現(xiàn)的點數(shù)和大于,則算過關(guān),可以隨意挑戰(zhàn)某一關(guān).若直接挑戰(zhàn)第三關(guān),則通關(guān)的概率為______;若直接挑戰(zhàn)第四關(guān),則通關(guān)的慨率為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知曲線的方程是(,).
(1)當(dāng),時,求曲線圍成的區(qū)域的面積;
(2)若直線:與曲線交于軸上方的兩點,,且,求點到直線距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓經(jīng)過點,且點到橢圓的兩焦點的距離之和為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若是橢圓上的兩個點,線段的中垂線的斜率為且直線與交于點,為坐標(biāo)原點,求證:三點共線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某公司為鄭州園博園生產(chǎn)某特許商品,該公司年固定成本為10萬元,每生產(chǎn)千件需另投入2 .7萬元,設(shè)該公司年內(nèi)共生產(chǎn)該特許商品工x千件并全部銷售完;每千件的銷售收入為R(x)萬元,
且,
(I)寫出年利潤W(萬元〉關(guān)于該特許商品x(千件)的函數(shù)解析式;
〔II〕年產(chǎn)量為多少千件時,該公司在該特許商品的生產(chǎn)中所獲年利潤最大?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com