【題目】黨的十九大報(bào)告中多次出現(xiàn)的“綠色”“低碳”“節(jié)約”等詞語(yǔ),正在走入百姓生活,綠色出行的理念已深入人心,騎自行車或步行漸漸成為市民的一種出行習(xí)慣.某市環(huán)保機(jī)構(gòu)隨機(jī)抽查統(tǒng)計(jì)了該市1800名成年市民某月騎車次數(shù)在各區(qū)間的人數(shù),統(tǒng)計(jì)如下表:
次數(shù) 年齡 | [0,10) | [10,20) | [20,30) | [30,40) | [40,50) | [50,60) |
18歲至31歲 | 8 | 12 | 20 | 60 | 140 | 150 |
32歲至44歲 | 12 | 28 | 20 | 140 | 60 | 150 |
45歲至59歲 | 25 | 50 | 80 | 100 | 225 | 450 |
60歲及以上 | 25 | 10 | 10 | 19 | 4 | 2 |
聯(lián)合國(guó)世界衛(wèi)生組織于2013年確定新的年齡分段:44歲及以下為青年人,45歲至59歲為中年人,60歲及以上為老人.
(1)若從被抽查的該月騎車次數(shù)在的老年人中隨機(jī)選出兩名幸運(yùn)者給予獎(jiǎng)勵(lì),求其中一名幸運(yùn)者該月騎車次數(shù)在之間,另一名幸運(yùn)者該月騎車次數(shù)在之間概率;
(2)若月騎車次數(shù)不少于30次者被稱為“騎行愛(ài)好者”,將上面提供的數(shù)據(jù)進(jìn)行統(tǒng)計(jì)后,把答卷中的列聯(lián)表補(bǔ)充完整,并計(jì)算說(shuō)明能否在犯錯(cuò)誤不超過(guò)0.001的前提下認(rèn)為“騎行愛(ài)好者”與“青年人”有關(guān)?
參考數(shù)據(jù):
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
,其中
【答案】(1);(2)詳見(jiàn)解析.
【解析】
(1)將6位老人分別記為a,b,c,d和A,B,利用列舉法能求出其中一名幸運(yùn)者該月騎車次數(shù)在[40,50)之間,另一名幸運(yùn)者該月騎車次數(shù)在[50,60)之間的概率.
(2)根據(jù)題意,得出如下2×2列聯(lián)表,求出K2=18>10.828,由此能在犯錯(cuò)誤的概率不超過(guò)0.001的前提下認(rèn)為“騎行愛(ài)好者”與“青年人”有關(guān).
(1)將6位老人分別記為和,則所有的抽法有:
,,,,,,,,,,,,,,共15種,
其中滿足條件的抽法有:
,,,,,,,共8種,
故其中一名幸運(yùn)者該月騎車次數(shù)在之間,另一名幸運(yùn)者該月騎車次數(shù)在之間的概率為.
(2)根據(jù)題意,得出如下列聯(lián)表
騎行 愛(ài)好者 | 非騎行愛(ài)好者 | 總計(jì) | |
青年人 | 700 | 100 | 800 |
非青年人 | 800 | 200 | 1000 |
總計(jì) | 1500 | 300 | 1800 |
∴,
故能在犯錯(cuò)誤的概率不超過(guò)0.001的前提下認(rèn)為“騎行愛(ài)好者”與“青年人”有關(guān).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某單位有員工1000名,平均每人每年創(chuàng)造利潤(rùn)10萬(wàn)元.為增加企業(yè)競(jìng)爭(zhēng)力,決定優(yōu)化產(chǎn)業(yè)結(jié)構(gòu),調(diào)整出名員工從事第三產(chǎn)業(yè),調(diào)整后平均每人每年創(chuàng)造利潤(rùn)為萬(wàn)元,剩下的員工平均每人每年創(chuàng)造的利潤(rùn)可以提高.
(1)若要保證剩余員工創(chuàng)造的年總利潤(rùn)不低于原來(lái)1000名員工創(chuàng)造的年總利潤(rùn),則最多調(diào)整出多少名員工從事第三產(chǎn)業(yè)?
(2)若要保證剩余員工創(chuàng)造的年總利潤(rùn)不低于原來(lái)1000名員工創(chuàng)造的年總利潤(rùn)條件下,若要求調(diào)整出的員工創(chuàng)造出的年總利潤(rùn)始終不高于剩余員工創(chuàng)造的年總利潤(rùn),則的取值范圍是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】鄭州一中社團(tuán)為調(diào)查學(xué)生學(xué)習(xí)圍棋的情況,隨機(jī)抽取了100名學(xué)生進(jìn)行調(diào)查.根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均學(xué)習(xí)圍棋時(shí)間的頻率分布直方圖:將日均學(xué)習(xí)圍棋時(shí)間不低于40分鐘的學(xué)生稱為“圍棋迷”.
(1)根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料你是否認(rèn)為“圍棋迷”與性別有關(guān)?
非圍棋迷 | 圍棋迷 | 合計(jì) | |
男 | |||
女 | 10 | 55 | |
合計(jì) |
(2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量學(xué)生中,采用隨機(jī)抽樣方法每次抽取1名學(xué)生,抽取3次,記被抽取的3名學(xué)生中的“圍棋迷”人數(shù)為.若每次抽取的結(jié)果是相互獨(dú)立的,求的分布列,期望
附:,
0.05 | 0.01 | |
3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)是圓上的動(dòng)點(diǎn),點(diǎn)是在軸上的投影,且.
(1)當(dāng)在圓上運(yùn)動(dòng)時(shí),求點(diǎn)的軌跡的方程;
(2)求過(guò)點(diǎn)(1,0),傾斜角為的直線被所截線段的長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知互不重合的直線,互不重合的平面,給出下列四個(gè)命題,正確命題的個(gè)數(shù)是
①若 , ,,則
②若,,則
③若,,,則
④若 , ,則//
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn),(為正整數(shù))都在函數(shù)的圖象上.
(1)若數(shù)列是等差數(shù)列,證明:數(shù)列是等比數(shù)列;
(2)設(shè),過(guò)點(diǎn)的直線與兩坐標(biāo)軸所圍成的三角形面積為,試求最小的實(shí)數(shù),使對(duì)一切正整數(shù)恒成立;
(3)對(duì)(2)中的數(shù)列,對(duì)每個(gè)正整數(shù),在與之間插入個(gè)3,得到一個(gè)新的數(shù)列,設(shè)是數(shù)列的前項(xiàng)和,試探究2016是否是數(shù)列中的某一項(xiàng),寫出你探究得到的結(jié)論并給出證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從分別寫有1,2,3,4,5的5張卡片中隨機(jī)抽取1張,放回后再隨機(jī)抽取1張,則抽得的第一張卡片上的數(shù)大于第二張卡片上的數(shù)的概率為()
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com