【題目】設(shè)直線分別是函數(shù) 圖象上點(diǎn)處的切線,垂直相交于點(diǎn),且分別與軸相交于點(diǎn)A,B,則△PAB的面積的取值范圍是( )
A. (1,+∞) B. (0,2) C. (0,+∞) D. (0,1)
【答案】D
【解析】
設(shè)出點(diǎn)P1,P2的坐標(biāo),求出原分段函數(shù)的導(dǎo)函數(shù),得到直線l1與l2的斜率,由兩直線垂直求得P1,P2的橫坐標(biāo)的乘積為1,再分別寫出兩直線的點(diǎn)斜式方程,求得A,B兩點(diǎn)的縱坐標(biāo),得到|AB|,聯(lián)立兩直線方程求得P的橫坐標(biāo),然后代入三角形面積公式,利用基本不等式求得△PAB的面積的取值范圍.
解:設(shè)P1(x1,y1),P2(x2,y2)(0<x1<1<x2),
當(dāng)0<x<1時(shí),f′(x),當(dāng)x>1時(shí),f′(x),
∴l1的斜率,l2的斜率,
∵l1與l2垂直,且x2>x1>0,
∴,即x1x2=1.
直線l1:,l2:.
取x=0分別得到A(0,1﹣lnx1),B(0,﹣1+lnx2),
|AB|=|1﹣lnx1﹣(﹣1+lnx2)|=|2﹣(lnx1+lnx2)|=|2﹣lnx1x2|=2.
聯(lián)立兩直線方程可得交點(diǎn)P的橫坐標(biāo)為x,
∴|AB||xP|.
∵函數(shù)y=x在(0,1)上為減函數(shù),且0<x1<1,
∴,則,
∴.
∴△PAB的面積的取值范圍是(0,1).
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),函數(shù).
⑴若的定義域?yàn)?/span>,求實(shí)數(shù)的取值范圍;
⑵當(dāng),求函數(shù)的最小值;
⑶是否存在實(shí)數(shù),使得函數(shù)的定義域?yàn)?/span>,值域?yàn)?/span>?若存在,求出的值;若不存在,則說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是定義域?yàn)?/span>的奇函數(shù),滿足f(1﹣x)=f(1+x).若,則 ( )
A.B.2C.0D.99
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)在橢圓上, 為橢圓的右焦點(diǎn), 分別為橢圓的左,右兩個(gè)頂點(diǎn).若過點(diǎn)且斜率不為0的直線與橢圓交于兩點(diǎn),且線段的斜率之積為.
(1)求橢圓的方程;
(2)已知直線與相交于點(diǎn),證明: 三點(diǎn)共線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若對(duì)任意的實(shí)數(shù)都有成立,求實(shí)數(shù)的值;
(2)若在區(qū)間上為單調(diào)增函數(shù),求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),求函數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)一個(gè)盒子里裝有三張卡片,分別標(biāo)記有數(shù)字,,,這三張卡片除標(biāo)記的數(shù)字外完全相同。隨機(jī)有放回地抽取次,每次抽取張,將抽取的卡片上的數(shù)字依次記為,,.
(Ⅰ)求“抽取的卡片上的數(shù)字滿足”的概率;
(Ⅱ)求“抽取的卡片上的數(shù)字,,不完全相同”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商店經(jīng)營(yíng)的某種消費(fèi)品的進(jìn)價(jià)為每件14元,月銷售量(百件)與每件的銷售價(jià)格(元)的關(guān)系如圖所示,每月各種開支2 000元.
(1)寫出月銷售量(百件)關(guān)于每件的銷售價(jià)格(元)的函數(shù)關(guān)系式.
(2)寫出月利潤(rùn)(元)與每件的銷售價(jià)格(元)的函數(shù)關(guān)系式.
(3)當(dāng)該消費(fèi)品每件的銷售價(jià)格為多少元時(shí),月利潤(rùn)最大?并求出最大月利潤(rùn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知橢圓經(jīng)過點(diǎn),其離心率為.
(1)求橢圓的方程;
(2)已知是橢圓上一點(diǎn),,為橢圓的焦點(diǎn),且,求點(diǎn)到軸的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,,分別為橢圓的左、右焦點(diǎn).動(dòng)直線過點(diǎn),且與橢圓相交于,兩點(diǎn)(直線與軸不重合).
(1)若點(diǎn)的坐標(biāo)為,求點(diǎn)坐標(biāo);
(2)點(diǎn),設(shè)直線,的斜率分別為,,求證:;
(3)求面積最大時(shí)的直線的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com