已知全集U為R,設(shè)集合A={x︳x<-4},集合B={x︳x>-2},集合C={x︳x<-4,x>-2},則∁U﹙A∪B﹚∩∁UC=
 
考點(diǎn):交、并、補(bǔ)集的混合運(yùn)算
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由已知條件求出A∪B,再求出∁U(A∪B),∁UC,由此能求出∁U(A∪B)∩∁UC.
解答: 解:全集U為R,設(shè)集合A={x︳x<-4},集合B={x︳x>-2},
集合C={x︳x<-4,x>-2},
∴AUB={x|x<-4或x>-2},
U(A∪B)={x|-4≤x≤-2},∁UC={x|x≤-2},
∴∁U(A∪B)∩∁UC
={x|-4≤x≤-2}∩{x|x≤-2}={x|-4≤x≤-2}.
故答案為:{x|-4≤x≤-2}.
點(diǎn)評(píng):本題考查集合的交、并、補(bǔ)集的混合運(yùn)算,是基礎(chǔ)題,解題時(shí)要注意不等式性質(zhì)的靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合P={x|x(x-1)≥0},Q={x|
1
x-a
>0},
(1)當(dāng)a=-1時(shí),求P∩Q,并在數(shù)軸上表示出來(lái);
(2)如果P∩Q=Q,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的三個(gè)角A,B,C成等差數(shù)列,且sinA=
3
3
,邊BC=4,則邊AC=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(文科)冪函數(shù)y=x
2
3
的單調(diào)減區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

寫出下列集合的關(guān)系:
(1)A={x|x=3k,k∈N},B={x|x=6m,m∈N}:
 
;
(2)A={x|x是4與10的最小公倍數(shù)},B={x|x=20n,n∈N+}:
 
;
(3)A={x|0<x<5},B={x|-1<x<5}:
 
;
(4)A={(x,y)|xy>0},B={(x,y)|x>0,y>0}:
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)點(diǎn)P(1,2)且在x軸,y軸上截距相等的直線方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于任意的實(shí)數(shù)x,等式x5=a0+a1(x-2)+a2(x-2)2+…+a5(x-2)5恒成立,則a2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若a>0,b>0,且lg(a+b)=-1,則
1
a
+
1
b
的最小值是( 。
A、
5
2
B、10
C、40
D、80

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)滿足方程af(x)+f(
1
x
)=ax,x∈R且x≠0,a為常數(shù),且a≠±1,求f(x)的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案