過點作直線與雙曲線相交于兩點、,且為線段的中點,求這條直線的方程.

解析試題分析:
思路分析:根據(jù)直線經(jīng)過點,設(shè)出直線方程;根據(jù)點為線段的中點,應(yīng)用中點坐標(biāo)公式,確定、的坐標(biāo)關(guān)系;
應(yīng)用“點差法”確定直線的斜率。
解:依題意可得直線的斜率存在,設(shè)為
則直線的方程為  1分
設(shè)                         2分
為線段的中點
                         5分
在雙曲線
                         7分
           8分
               10分
經(jīng)檢驗,直線的方程為                 12分
                            13分
考點:雙曲線的標(biāo)準(zhǔn)方程,直線方程。
點評:中檔題,涉及橢圓、雙曲線的弦中點問題,往往可以通過使用“點差法”,確定直線的斜率。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

極坐標(biāo)系中橢圓C的方程為以極點為原點,極軸為軸非負(fù)半軸,建立平面直角坐標(biāo)系,且兩坐標(biāo)系取相同的單位長度.
(Ⅰ)求該橢圓的直角標(biāo)方程;若橢圓上任一點坐標(biāo)為,求的取值范圍;
(Ⅱ)若橢圓的兩條弦交于點,且直線的傾斜角互補(bǔ),
求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的兩個焦點分別為,且,點在橢圓上,且的周長為6.
(I)求橢圓的方程;
(II)若點的坐標(biāo)為,不過原點的直線與橢圓相交于兩點,設(shè)線段的中點為,點到直線的距離為,且三點共線.求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,設(shè)拋物線的焦點為,且其準(zhǔn)線與軸交于,以為焦點,離心率的橢圓與拋物線軸上方的一個交點為P.

(1)當(dāng)時,求橢圓的方程;
(2)是否存在實數(shù),使得的三條邊的邊長是連續(xù)的自然數(shù)?若存在,求出這樣的實數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線,過軸上一點的直線與拋物線交于點兩點。
證明,存在唯一一點,使得為常數(shù),并確定點的坐標(biāo)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓(a>b>0)拋物線,從每條曲線上取兩個點,將其坐標(biāo)記錄于下表中:



4

1

2
4

2
(1)求的標(biāo)準(zhǔn)方程;
(2)四邊形ABCD的頂點在橢圓上,且對角線AC、BD過原點O,若,
(i) 求的最值.
(ii) 求四邊形ABCD的面積;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知曲線,曲線,P是平面上一點,若存在過點P的直線與都有公共點,則稱P為“C1—C2型點”.

(1)在正確證明的左焦點是“C1—C2型點”時,要使用一條過該焦點的直線,試寫出一條這樣的直線的方程(不要求驗證);
(2)設(shè)直線有公共點,求證,進(jìn)而證明原點不是“C1—C2型點”;
(3)求證:圓內(nèi)的點都不是“C1—C2型點”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

橢圓的左、右焦點分別是,離心率為,過且垂直于軸的直線被橢圓截得的線段長為。
(Ⅰ)求橢圓的方程;
(Ⅱ)點是橢圓上除長軸端點外的任一點,連接,設(shè)的角平分線的長軸于點,求的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,過點作斜率為的直線,使與橢圓有且只有一個公共點,設(shè)直線的斜率分別為。若,試證明為定值,并求出這個定值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,橢圓C以過點A(1,),兩個焦點為(-1,0)(1,0)。
(1)求橢圓C的方程;
(2)E,F是橢圓C上的兩個動點,如果直線AE的斜率與AF的斜率互為相反數(shù),證明直線EF的斜率為定值,并求出這個定值。

查看答案和解析>>

同步練習(xí)冊答案