【題目】已知函數(shù),,且函數(shù)是偶函數(shù).
(1)求的解析式;.
(2)若不等式在上恒成立,求n的取值范圍;
(3)若函數(shù)恰好有三個(gè)零點(diǎn),求k的值及該函數(shù)的零點(diǎn).
【答案】(1);(2);(3),該函數(shù)的零點(diǎn)為0,,2.
【解析】
(1)根據(jù)是偶函數(shù)求得表達(dá)式算出的值,進(jìn)而求得的解析式即可.
(2)換元令,再求解的最小值,化簡(jiǎn)利用二次不等式進(jìn)行范圍運(yùn)算即可.
(3)換元令,結(jié)合復(fù)合函數(shù)的零點(diǎn)問(wèn)題,分析即可.
(1)∵,
∴.
∵是偶函數(shù),∴,∴.
∴,
∴.
(2)令,∵,
∴,不等式在上恒成立,等價(jià)于在上恒成立,
∴
令,,則,,∴.
(3)令,則,方程可化為,即,也即.
又∵方程有三個(gè)實(shí)數(shù)根,
∴有一個(gè)根為2,∴.
∴,解得或.
由,得,
由,得,∴該函數(shù)的零點(diǎn)為0,-2,2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,E、F分別是BC、CD的中點(diǎn),G是EF的中點(diǎn),現(xiàn)在沿AE、AF及EF把這個(gè)正方形折成一個(gè)空間圖形,使B、C、D三點(diǎn)重合,重合后的點(diǎn)記為H,那么,在這個(gè)空間圖形中必有( 。
A. 所在平面B. 所在平面
C. 所在平面D. 所在平面
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x<0時(shí),f(x)=x2+2x.現(xiàn)已畫(huà)出函數(shù)f(x)在y軸左側(cè)的圖象如圖所示,
(1)畫(huà)出函數(shù)f(x),x∈R剩余部分的圖象,并根據(jù)圖象寫(xiě)出函數(shù)f(x),x∈R的單調(diào)區(qū)間;(只寫(xiě)答案)
(2)求函數(shù)f(x),x∈R的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC中,頂點(diǎn)A(3,7),邊AB上的中線(xiàn)CD所在直線(xiàn)的方程是,邊AC上的高BE所在直線(xiàn)的方程是.
(1)求點(diǎn)A關(guān)于直線(xiàn)CD的對(duì)稱(chēng)點(diǎn)的坐標(biāo);
(2)求頂點(diǎn)B、C的坐標(biāo);
(3)過(guò)A作直線(xiàn),使B,C兩點(diǎn)到的距離相等,求直線(xiàn)的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列關(guān)于古典概型的說(shuō)法中正確的是( )
①試驗(yàn)中所有可能出現(xiàn)的基本事件只有有限個(gè);
②每個(gè)事件出現(xiàn)的可能性相等;
③每個(gè)基本事件出現(xiàn)的可能性相等;
④基本事件的總數(shù)為n,隨機(jī)事件A若包含k個(gè)基本事件,則.
A. ②④ B. ③④ C. ①④ D. ①③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,函數(shù)F(x)=min{2|x1|,x22ax+4a2},
其中min{p,q}=
(Ⅰ)求使得等式F(x)=x22ax+4a2成立的x的取值范圍;
(Ⅱ)(ⅰ)求F(x)的最小值m(a);
(ⅱ)求F(x)在區(qū)間[0,6]上的最大值M(a).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)x(單位:千元)對(duì)年銷(xiāo)售量y(單位:t)和年利潤(rùn)z(單位:千元)的影響.對(duì)近8年的年宣傳費(fèi)xi和年銷(xiāo)售量yi(i=1,2,…,8)數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.
表中 ,
(Ⅰ)根據(jù)散點(diǎn)圖判斷,y=a+bx與y=c+d哪一個(gè)適宜作為年銷(xiāo)售量y關(guān)于年宣傳費(fèi)x的回歸方程類(lèi)型?(給出判斷即可,不必說(shuō)明理由)
(Ⅱ)根據(jù)(Ⅰ)的判斷結(jié)果及表中數(shù)據(jù),建立y關(guān)于x的回歸方程;
(Ⅲ)已知這種產(chǎn)品的年利潤(rùn)z與x、y的關(guān)系為z=0.2y-x.根據(jù)(Ⅱ)的結(jié)果回答下列問(wèn)題:
(ⅰ)年宣傳費(fèi)x=49時(shí),年銷(xiāo)售量及年利潤(rùn)的預(yù)報(bào)值是多少?
(ⅱ)年宣傳費(fèi)x為何值時(shí),年利潤(rùn)的預(yù)報(bào)值最大?
附:對(duì)于一組數(shù)據(jù),,……,,其回歸線(xiàn)的斜率和截距的最小二乘估計(jì)分別為:
46.6 | 563 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若對(duì)恒成立,求實(shí)數(shù)的取值范圍;
(2)已知關(guān)于的方程有兩個(gè)實(shí)根,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某租賃公司擁有汽車(chē)100輛,當(dāng)每輛車(chē)的月租金為3000元時(shí),可全部租出,當(dāng)每輛車(chē)的月租金每增加50元時(shí),未租出的車(chē)將會(huì)增加一輛,租出的車(chē)每輛每月需維護(hù)費(fèi)150元,未租出的車(chē)每輛每月需要維護(hù)費(fèi)50元。
(1)當(dāng)每輛車(chē)的月租金定為3600元時(shí),能租出多少輛車(chē)?
(2)當(dāng)每輛車(chē)的月租金定為多少元時(shí),租賃公司的月收益最大?最大月收益是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com