【題目】已知1是函數(shù)f(x)=ax2+bx+c(a>b>c)的一個零點,若存在實數(shù)x0.使得f(x0)<0.則f(x)的另一個零點可能是( 。

A. B. C. D.

【答案】B

【解析】

由題意可得a>b>c,則a>0,c<0,且|a|>|b|,得,分類討論即可得到另外一個零點。

1是函數(shù)f(x)=ax2+bx+c的一個零點,

a+b+c=0,

a>b>c,a>0,c<0,且|a|>|b|,得

函數(shù)f(x)=ax2+bx+c的圖象是開口向上的拋物線,其對稱軸方程為

所以

畫出函數(shù)大致圖象如圖:

當(dāng)時,函數(shù)的另一零點x1[-1,0),x0(-1,1)

x0-3(-4,-2), ,,

當(dāng)時,函數(shù)的另一零點x1(-2,-1),x0(-2,1)

x0-3(-5,-2),,

綜上可知f(x)的另一個零點可能是

所以選B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=x|x-a|+bxa,bR).

(Ⅰ)當(dāng)b=-1時,函數(shù)fx)恰有兩個不同的零點,求實數(shù)a的值;

(Ⅱ)當(dāng)b=1時,

①若對于任意x∈[1,3],恒有fx)≤2x2,求a的取值范圍;

②若a≥2,求函數(shù)fx)在區(qū)間[0,2]上的最大值ga).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】圓x2+y2﹣2x﹣8y+13=0的圓心到直線ax+y﹣1=0的距離為1,則a=( 。
A.﹣
B.﹣
C.
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)在點處的切線方程為

(1)求函數(shù)的解析式;

(2)若經(jīng)過點可以作出曲線的三條切線,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 )的離心率為,以原點為圓心,橢圓的長半軸長為半徑的圓與直線相切.

(Ⅰ)求橢圓的標準方程;

(Ⅱ)已知點為動直線與橢圓的兩個交點,問:在軸上是否存在定點,使得為定值?若存在,試求出點的坐標和定值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(k∈R)

(Ⅰ)若該函數(shù)是偶函數(shù),求實數(shù)k及f(log32)的值;

(Ⅱ)若函數(shù)g(x)=x+log3f(x)有零點,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列數(shù)列{an}的通項公式an(1)n(2n1)(nN*),Sn為其前n項和.

(1)S1S2,S3S4的值;

(2)猜想Sn的表達式,并用數(shù)學(xué)歸納法證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若a>b>1,0<c<1,則( 。
A.ac<bc
B.abc<bac
C.alogbc<blogac
D.logac<logbc

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,

當(dāng)時,若上為減函數(shù),上是增函數(shù),求值;

對任意恒成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案