(本題滿分15分)已知函數(shù)
(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍.
解:(Ⅰ) 當(dāng)時(shí),,
…………………………………………………………..…...2分,
當(dāng)時(shí),,所以的減區(qū)間是……………………………..………2分
當(dāng)時(shí),,所以的減區(qū)間是……………………………………….2分
(Ⅱ) ,…………..….2分
①若是單調(diào)減函數(shù),則上恒成立,不可能,故不可能在是單調(diào)減函數(shù);…………………………………………………………………….……2分
②若上是單調(diào)增函數(shù),即上恒成立,
所以上恒成立,即上恒成立,
,因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823191236941365.gif" style="vertical-align:middle;" />在上單調(diào)減函數(shù),,……….4分
所以a的取值范圍是……………………………………………………………………..1分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若函數(shù)分別是上的奇函數(shù)、偶函數(shù),且滿足,則有(  ).
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

f (x)是定義在(0,+∞)上的非負(fù)可導(dǎo)函數(shù) ,且滿足,若 ,則的大小關(guān)系是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)
如圖,已知曲線與曲線交于點(diǎn).直線與曲線分別相交于點(diǎn).
(Ⅰ)寫出四邊形的面的函數(shù)關(guān)系
(Ⅱ)討論的單調(diào)性,并求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分14分)已知函數(shù)(常數(shù).
(Ⅰ) 當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(Ⅱ)討論函數(shù)在區(qū)間上零點(diǎn)的個(gè)數(shù)(為自然對(duì)數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù):
(1)證明:++2=0對(duì)定義域內(nèi)的所有都成立;
(2)當(dāng)的定義域?yàn)閇+,+1]時(shí),求證:的值域?yàn)閇-3,-2];
(3)若,函數(shù)=x2+|(x-) | ,求的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù) ()(為自然對(duì)數(shù)的底數(shù))
(1)求的極值
(2)對(duì)于數(shù)列,   ()
①  證明:
② 考察關(guān)于正整數(shù)的方程是否有解,并說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=x2+ln x-1.
(1)求函數(shù)f(x)在區(qū)間[1,e](e為自然對(duì)數(shù)的底)上的最大值和最小值;
(2)求證:在區(qū)間(1,+∞)上,函數(shù)f(x)的圖象在函數(shù)g(x)=x3的圖象的下方
(3)(理)求證:[f′(x)]n-f′(xn)≥2n-2(n∈N*)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)函數(shù)等于
A.6B.2C.0D.-6

查看答案和解析>>

同步練習(xí)冊(cè)答案