已知a,b,c∈R,a+2b+3c=6,則a2+4b2+9c2的最小值為________.
12
【解析】∵(x+y+z)2=x2+y2+z2+2xy+2yz+2zx≤3(x2+y2+z2),
∴a2+4b2+9c2≥(a+2b+3c)2==12.
∴a2+4b2+9c2的最小值為12.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪專(zhuān)題復(fù)習(xí)知能提升演練1-2-3練習(xí)卷(解析版) 題型:選擇題
已知函數(shù)f(x)=x(ln x-ax)有兩個(gè)極值點(diǎn),則實(shí)數(shù)a的取值范圍是( ).
A.(-∞,0) B.(0,) C.(0,1) D.(0,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪專(zhuān)題復(fù)習(xí)知能提升演練1-1-2練習(xí)卷(解析版) 題型:填空題
已知兩個(gè)單位向量a,b的夾角為60°,c=ta+(1-t)b.若b·c=0,則t=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)1-1集合等練習(xí)卷(解析版) 題型:解答題
已知0<α<,β為f(x)=cos的最小正周期,a=,b=(cos α,2),且a·b=m,求的值.2cos2α+sin 2?α+β?cos α-sin α
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)1-1集合等練習(xí)卷(解析版) 題型:選擇題
已知命題p:≤≤,命題q:x+∈,則下列說(shuō)法正確的是 ( ).
A.p是q的充要條件
B.p是q的充分不必要條件
C.p是q的必要不充分條件
D.p是q的既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪專(zhuān)題復(fù)習(xí)真題感悟選修4練習(xí)卷(解析版) 題型:填空題
曲線(xiàn)C的直角坐標(biāo)方程為x2+y2-2x=0,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,則曲線(xiàn)C的極坐標(biāo)方程為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪專(zhuān)題復(fù)習(xí)真題感悟選修4練習(xí)卷(解析版) 題型:填空題
如圖,AB為圓O的直徑,PA為圓O的切線(xiàn),PB與圓O相交于D.若PA=3,PD∶DB=9∶16,則PD=________,AB=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪專(zhuān)題復(fù)習(xí)真題感悟1-6練習(xí)卷(解析版) 題型:選擇題
設(shè)拋物線(xiàn)C:y2=4x的焦點(diǎn)為F,直線(xiàn)l過(guò)F且與C交于A,B兩點(diǎn).若|AF|=3|BF|,則l的方程為 ( ).
A.y=x-1或y=-x+1
B.y= (x-1)或y=- (x-1)
C.y= (x-1)或y=- (x-1)
D.y= (x-1)或y=- (x-1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪專(zhuān)題復(fù)習(xí)真題感悟1-2練習(xí)卷(解析版) 題型:選擇題
已知a,b,c∈R,函數(shù)f(x)=ax2+bx+c.若f(0)=f(4)>f(1),則 ( ).
A.a>0,4a+b=0 B.a<0,4a+b=0
C.a>0,2a+b=0 D.a<0,2a+b=0
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com