12.已知集合A={-2,-1,0,1,2},B={x|0≤x≤1},那么A∩B等于( 。
A.{0}B.{1}C.{0,1}D.[0,1]

分析 由A與B,求出兩集合的交集即可.

解答 解:∵A={-2,-1,0,1,2},B={x|0≤x≤1},
∴A∩B={0,1},
故選:C.

點(diǎn)評 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知兩點(diǎn)A(-1,5),B(3,7),圓C以線段AB為直徑.
(Ⅰ)求圓C的方程;
(Ⅱ)若直線l:x+y-4=0與圓C相交于M,N兩點(diǎn),求弦MN的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.命題p:若λ$\overrightarrow{a}$=0,則$\overrightarrow{a}$=0;命題q:?x0>0,使得x0-1-lnx0=0,則下列命題為真命題的是( 。
A.p∧qB.p∨(¬q)C.(¬p)∧(¬q)D.(¬p)∧q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)m,n是不同的直線,α,β是不同的平面,下列四個(gè)命題為真命題的是( 。
①若m⊥α,n⊥m,則n∥α;       
②若α∥β,n⊥α,m∥β,則n⊥m;
③若m∥α,n⊥β,m⊥n,則α⊥β;
④若m∥α,n⊥β,m∥n,則α⊥β.
A.②③B.③④C.②④D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.空間幾何體ABCDEF如圖所示.已知面ABCD⊥面ADEF,ABCD為梯形,ADEF為正方形,且AB∥CD,AB⊥AD,CD=4,AB=AD=2,G為CE的中點(diǎn).
(Ⅰ)求證:BG∥面ADEF;
(Ⅱ)求證:面DBG⊥面BDF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在(x-3)7的展開式中,x5的系數(shù)是189(結(jié)果用數(shù)值表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.用數(shù)學(xué)歸納法證明“(n+1)(n+2)(n+3)…(n+n)=2n•1•3…(2n-1)”(n∈N+)時(shí),從“n=k到n=k+1”時(shí),左邊應(yīng)增添的式子是( 。
A.2k+1B.2(2k+1)C.$\frac{2k+1}{k+1}$D.$\frac{2k+2}{k+1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖四棱錐P-ABCD中,底面ABCD是平行四邊形,∠ACB=90°,PA⊥平面ABCD,PA=BC=1,AB=$\sqrt{2}$,F(xiàn)是BC的中點(diǎn).
(Ⅰ)求證:DA⊥平面PAC
(Ⅱ)PD的中點(diǎn)為G,求證:CG∥平面PAF
(Ⅲ)求三棱錐A-CDG的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.?dāng)?shù)列{an}是公比為q(q>1)的等比數(shù)列,其前n項(xiàng)和為Sn.已知S3=7,且3a2是a1+3與a3+4的等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式an
(Ⅱ)設(shè)bn=$\frac{1}{lo{g}_{2}{a}_{n+1}}$,cn=bn(bn+1-bn+2),求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊答案