【題目】設(shè)地球半徑為R,在北緯60°圈上有A、B兩地,它們?cè)诰暥热ι系幕¢L(zhǎng)是 ,則這兩地的球面距離是( )
A.
B.
C.
D.
【答案】B
【解析】解答:解:北緯60°圈所在圓的半徑為 ,它們?cè)诰暥热ι系幕¢L(zhǎng) =θ× (θ是A、B兩地在北緯60°圈上對(duì)應(yīng)的圓心角),故 θ= ,∴線段AB= × = ,
設(shè)地球的中心為O,則△AOB中,由余弦定理得 =R2+R2﹣2R2cos∠AOB,
∴cos∠AOB= ,∠AOB= ,A、B這兩地的球面距離是 .
故選 B.
分析:先求出北緯60°圈所在圓的半徑,是A、B兩地在北緯60°圈上對(duì)應(yīng)的圓心角,得到線段AB 的長(zhǎng),
設(shè)地球的中心為O,解三角形求出∠AOB的大小,利用弧長(zhǎng)公式求A、B這兩地的球面距離.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知A= ,b2﹣a2= c2 .
(1)求tanC的值;
(2)若△ABC的面積為3,求b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以下幾個(gè)命題中真命題的序號(hào)為 .
①在空間中,m、n是兩條不重合的直線,α、β是兩個(gè)不重合的平面,如果α⊥β,α∩β=n,m⊥n,那么m⊥β;
②相關(guān)系數(shù)r的絕對(duì)值越接近于1,兩個(gè)隨機(jī)變量的線性相關(guān)性越強(qiáng);
③用秦九昭算法求多項(xiàng)式f(x)=208+9x2+6x4+x6在x=﹣4時(shí),v2的值為22;
④過(guò)拋物線y2=4x的焦點(diǎn)作直線與拋物線相交于A、B兩點(diǎn),則使它們的橫坐標(biāo)之和等于4的直線有且只有兩條.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)討論的單調(diào)性;
(2)設(shè),當(dāng)時(shí),,求的最大值;
(3)已知,估計(jì)的近似值(精確到0.001)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線上有一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)作直線垂直于軸,動(dòng)點(diǎn)在上,且滿足(為坐標(biāo)原點(diǎn)),記點(diǎn)的軌跡為.
(I)求曲線的方程;
(II)若直線是曲線的一條切線,當(dāng)點(diǎn)到直線的距離最短時(shí),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于x的不等式 >1+ (其中k∈R,k≠0).
(1)若x=3在上述不等式的解集中,試確定k的取值范圍;
(2)若k>1時(shí),上述不等式的解集是x∈(3,+∞),求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知E、F、G、H為空間四邊形ABCD的邊AB、BC、CD、DA上的點(diǎn),且EH∥FG.求證:
(1)EH∥面BCD;
(2)EH∥BD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}中,a1=1,an=an﹣1+3(n≥2,n∈N*),數(shù)列{bn}滿足bn= ,n∈N* , 則 (b1+b2+…+bn) .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com