【題目】山西某公司有一批專(zhuān)業(yè)技術(shù)人員,對(duì)他們進(jìn)行年齡狀況和接受教育程度(本科學(xué)歷)的調(diào)查,其結(jié)果(人數(shù)分布)如表:
學(xué)歷 | 35歲以下 | 3550歲 | 50歲以上 |
本科 | 80 | 30 | 20 |
研究生 | 20 |
(Ⅰ)用分層抽樣的方法在歲年齡段的專(zhuān)業(yè)技術(shù)人員中抽取一個(gè)容量為10的樣本,將該樣本看成一個(gè)總體,從中任取3人,求至少有1人的學(xué)歷為研究生的概率;
(Ⅱ)在這個(gè)公司的專(zhuān)業(yè)技術(shù)人員中按年齡狀況用分層抽樣的方法抽取個(gè)人,其中35歲以下48人,50歲以上10人,再?gòu)倪@個(gè)人中隨機(jī)抽取出1人,此人的年齡為50歲以上的概率為,求、的值.
【答案】(Ⅰ);(Ⅱ),.
【解析】試題分析:(Ⅰ)設(shè)抽取學(xué)歷為本科的人數(shù)為,由題意可得,可得抽取了學(xué)歷為研究生4人,學(xué)歷為本科6人,故從中任取3人,至少有1人的教育程度為研究生的概率為;
(Ⅱ)依題意得:,解得的值,可得35~50歲中被抽取的人數(shù),再根據(jù)分層抽樣的定義和性質(zhì)列出比例式,求得、的值.
試題解析:
(Ⅰ)設(shè)抽取學(xué)歷為本科的人數(shù)為,由題意可得,解得.
所以抽取了學(xué)歷為研究生4人,學(xué)歷為本科6人,
所以從中抽取3人,至少有一人的教育程度為研究生的改良為.
(Ⅱ)依題意得,解得.
所以歲中被抽取的人數(shù)為.
所以,解得,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在上的函數(shù)是奇函數(shù).
(1)求的值;
(2)若對(duì)任意的,不等式恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列關(guān)于回歸分析的說(shuō)法中錯(cuò)誤的是( )
A. 回歸直線(xiàn)一定過(guò)樣本中心
B. 殘差圖中殘差點(diǎn)比較均勻地落在水平的帶狀區(qū)域中,說(shuō)明選用的模型比較合適
C. 兩個(gè)模型中殘差平方和越小的模型擬合的效果越好
D. 甲、乙兩個(gè)模型的分別約為0.98和0.80,則模型乙的擬合效果更好
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率,兩焦點(diǎn)分別為,右頂點(diǎn)為, .
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)過(guò)定點(diǎn)的直線(xiàn)與雙曲線(xiàn)的左支有兩個(gè)交點(diǎn),與橢圓交于兩點(diǎn),與圓交于兩點(diǎn),若的面積為, ,求正數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓: 的左、右焦點(diǎn)分別為, ,點(diǎn)在橢圓上.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)是否存在斜率為2的直線(xiàn),使得當(dāng)直線(xiàn)與橢圓有兩個(gè)不同交點(diǎn)、時(shí),能在直線(xiàn)上找到一點(diǎn),在橢圓上找到一點(diǎn),滿(mǎn)足?若存在,求出直線(xiàn)的方程;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知, 是兩條不同直線(xiàn), , 是兩個(gè)不同平面,則下列命題正確的是( )
A. 若, 垂直于同一平面,則與平行
B. 若, 平行于同一平面,則與平行
C. 若, 不平行,則在內(nèi)不存在與平行的直線(xiàn)
D. 若, 不平行,則與不可能垂直于同一平面
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A、B、C為△ABC的三個(gè)內(nèi)角,且其對(duì)邊分別為a、b、c,若cosBcosC﹣sinBsinC= .
(1)求角A;
(2)若a=2 ,b+c=4,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列命題:
①函數(shù)y=cos(2x﹣ )圖象的一條對(duì)稱(chēng)軸是x=
②在同一坐標(biāo)系中,函數(shù)y=sinx與y=lgx的交點(diǎn)個(gè)數(shù)為3個(gè);
③將函數(shù)y=sin(2x+ )的圖象向右平移 個(gè)單位長(zhǎng)度可得到函數(shù)y=sin2x的圖象;
④存在實(shí)數(shù)x,使得等式sinx+cosx= 成立;
其中正確的命題為(寫(xiě)出所有正確命題的序號(hào)).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com