已知圓C:=0
(1)已知不過原點(diǎn)的直線與圓C相切,且在軸,軸上的截距相等,求直線的方程;
(2)求經(jīng)過原點(diǎn)且被圓C截得的線段長為2的直線方程
(1)或;(2),
【解析】
試題分析:(1)因?yàn)橐阎?/span>不過原點(diǎn)的直線與圓C相切,且在軸,軸上的截距相等,所以可以假設(shè)所求的直線為,又因?yàn)樵撝本與圓相切所以圓C:=0的圓心(-1,2)到直線的距離等于圓的半徑 即可求出的值
(2)求經(jīng)過原點(diǎn)且被圓C截得的線段長為2的直線方程,要分兩類i)直線的斜率不存在;ii)直線的斜率存在 再根據(jù)點(diǎn)到直線的距離即可求得結(jié)論
試題解析:(1)∵切線在兩坐標(biāo)軸上截距相等且不為零,設(shè)直線方程為 1分
∴圓心C(-1,2)到切線的距離等于圓半徑, 3分
即= 4分
∴或 5分
所求切線方程為:或 6分
(2)當(dāng)直線斜率不存在時(shí),直線即為y軸,此時(shí),交點(diǎn)坐標(biāo)為(0,1),(0,3),線段長為2,符合故直線 8分
當(dāng)直線斜率存在時(shí),設(shè)直線方程為,即
由已知得,圓心到直線的距離為1, 9分
則, 11分
直線方程為
綜上,直線方程為, 12分
考點(diǎn):1 點(diǎn)到直線的距離 2 直線與圓的位置關(guān)系 3 直線方程的表示
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2016屆福建省高一上學(xué)期期末數(shù)學(xué)試卷(解析版) 題型:選擇題
若直線經(jīng)過兩點(diǎn),則直線的傾斜角為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2016屆甘肅高臺第一中學(xué)高一秋學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:選擇題
設(shè),實(shí)數(shù)滿足,則函數(shù)的圖象形狀 ( )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2016屆甘肅天水一中高一上學(xué)期必修一第一學(xué)段考試數(shù)學(xué)試卷(解析版) 題型:選擇題
函數(shù)的單調(diào)減區(qū)間為( 。
A. 。拢 C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2016屆湖南省高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
已知圓,設(shè)點(diǎn)B,C是直線上的兩點(diǎn),它們的橫坐標(biāo)分別是,點(diǎn)P在線段BC上,過P點(diǎn)作圓M的切線PA,切點(diǎn)為A
(1)若,求直線的方程;
(2)經(jīng)過三點(diǎn)的圓的圓心是,求線段(為坐標(biāo)原點(diǎn))長的最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2016屆湖南省高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:填空題
直線恒經(jīng)過定點(diǎn),則點(diǎn)的坐標(biāo)為______
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2016屆湖南省高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:選擇題
一個(gè)正方體的頂點(diǎn)都在球面上,它的棱長為,則球的表面積是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2016屆湖南張家界普通高中高一上學(xué)期期末聯(lián)考數(shù)學(xué)卷(解析版) 題型:選擇題
在平行四邊形中,與交于點(diǎn),為線段的中點(diǎn),的延長線交于.設(shè),則( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2016屆湖北荊州中學(xué)高一上學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題
若實(shí)數(shù),滿足,則關(guān)于的函數(shù)的圖象形狀大致是( )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com