已知,,試比較的大小.

答案:略
解析:

由于給出的條件是,所以分,兩種情形討論即可.

解:∵

,

,

當(dāng)時(shí),

,且p1,

,即

當(dāng),時(shí),∵,

,∴


提示:

(1)本題實(shí)質(zhì)上是同底數(shù)冪大小的比較,因此要利用函數(shù)的單調(diào)性,首先確定兩個(gè)指數(shù)的大小,再利用單調(diào)性得出函數(shù)值大小.(2)在確定兩個(gè)指數(shù)大小時(shí),用了作差法和分類(lèi)討論思想.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2012年江蘇省常州中學(xué)高考沖刺復(fù)習(xí)單元卷:函數(shù)(解析版) 題型:解答題

已知函數(shù)f(x)的定義域?yàn)閇0,1],且同時(shí)滿(mǎn)足:①f(1)=3;②f(x)≥2對(duì)一切x∈[0,1]恒成立;③若x1≥0,x2≥0,x1+x2≤1,則f(x1+x2)≥f(x1)+f(x2)-2,
(Ⅰ)求函數(shù)f(x)的最大值和最小值;
(Ⅱ)試比較的大小;
(Ⅲ)某同學(xué)發(fā)現(xiàn):當(dāng)(n∈N)時(shí),有f(x)<2x+2,由此他提出猜想:對(duì)一切x∈(0,1],都有f(x)<2x+2,請(qǐng)你判斷此猜想是否正確,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2007年江蘇省蘇錫常鎮(zhèn)四市高考數(shù)學(xué)一模試卷(解析版) 題型:解答題

已知函數(shù)f(x)的定義域?yàn)閇0,1],且同時(shí)滿(mǎn)足:①f(1)=3;②f(x)≥2對(duì)一切x∈[0,1]恒成立;③若x1≥0,x2≥0,x1+x2≤1,則f(x1+x2)≥f(x1)+f(x2)-2,
(Ⅰ)求函數(shù)f(x)的最大值和最小值;
(Ⅱ)試比較的大;
(Ⅲ)某同學(xué)發(fā)現(xiàn):當(dāng)(n∈N)時(shí),有f(x)<2x+2,由此他提出猜想:對(duì)一切x∈(0,1],都有f(x)<2x+2,請(qǐng)你判斷此猜想是否正確,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆浙江省高二下期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)

(1)討論函數(shù)的單調(diào)性;

(2)若函數(shù)的最小值為,求的最大值;

(3)若函數(shù)的最小值為,定義域內(nèi)的任意兩個(gè)值,試比較  的大小.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年湖北省高三10月月考理科數(shù)學(xué)試題 題型:解答題

(本小題滿(mǎn)分14分)

已知函數(shù)f(x)的定義域?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2012052310090660937629/SYS201205231010316718350864_ST.files/image001.png">,且同時(shí)滿(mǎn)足:①f(1)=3;②對(duì)一切恒成立;③若,,則

①求函數(shù)f(x)的最大值和最小值;

②試比較 的大小;

③某同學(xué)發(fā)現(xiàn):當(dāng)時(shí),有,由此他提出猜想:對(duì)一切,都有,請(qǐng)你判斷此猜想是否正確,并說(shuō)明理由.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆安徽省高一元月文理分班考試數(shù)學(xué) 題型:解答題

 

(13分,理科做)已知函數(shù)的定義域?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2012052120461776561595/SYS201205212048004843164869_ST.files/image002.png">,且同時(shí)滿(mǎn)足:①;②恒成立;③若,則有

(1)試求函數(shù)的最大值和最小值;

(2)試比較的大小N);

(3)某人發(fā)現(xiàn):當(dāng)x=(nÎN)時(shí),有f(x)<2x+2.由此他提出猜想:對(duì)一切xÎ(0,1,都有,請(qǐng)你判斷此猜想是否正確,并說(shuō)明理由.

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案