已知三點(diǎn)A(0,4)、B(0,-4)、C(7,-3),△ABC外接圓為圓M(圓心M).
(1)求圓M的方程;
(2)若N(-7,0),R在圓M上運(yùn)動,平面上一動點(diǎn)P滿足
RP
=4
PN
,求動點(diǎn)P的軌跡方程.
(1)∵A(0,4)、B(0,-4)
∴△ABC外接圓M的圓心在x軸上,
設(shè)M(a,0),則r2=a2+16=(a-7)2+(0+3)2,
∴a=3,圓的半徑為5,
∴圓M的標(biāo)準(zhǔn)方程:(x-3)2+y2=25;
(2)設(shè)P(x,y),R(x0,y0),則
RP
=4
PN
,
∴(x-x0,y-y0)=4(-7-x,-y),
∴x0=28-5x,y0=5y,
∵(x0-3)2+y02=25,
∴(28-5x-3)2+(5y)2=25
化簡可得動點(diǎn)P的軌跡方程:(x+5)2+y2=1.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知圓C1:(x-2)2+(y-3)2=1,圓C2:(x-3)2+(y-4)2=9,M,N分別是圓C1,C2上的動點(diǎn),P為x軸上的動點(diǎn),則|PM|+|PN|的最小值為( 。
A.5
2
-4
B.
17
-
1
C.6-2
2
D.
17

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

動點(diǎn)M在曲線x2+y2=1上移動,M和定點(diǎn)B(3,1)連線的中點(diǎn)為P,則P點(diǎn)的軌跡方程為:______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)直線x+ky-1=0被圓O:x2+y2=2所截弦的中點(diǎn)的軌跡為M,則曲線M與直線x-y-1=0位置關(guān)系為( 。
A.相離B.相切C.相交D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

點(diǎn)P是以F1,F(xiàn)2為焦點(diǎn)的橢圓上的一點(diǎn),過焦點(diǎn)F2作∠F1PF2的外角平分線的垂線,垂足為M點(diǎn),則點(diǎn)M的軌跡是( 。
A.拋物線B.橢圓C.雙曲線D.圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平行四邊形OABC中,點(diǎn)O是原點(diǎn),點(diǎn)A和點(diǎn)C的坐標(biāo)分別是(3,0)、(1,3),點(diǎn)D是線段AB上的動點(diǎn).
(1)求AB所在直線的一般式方程;
(2)當(dāng)D在線段AB上運(yùn)動時,求線段CD的中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系xoy中,設(shè)點(diǎn)F(0,p)(p>0),直線l:y=-p,點(diǎn)p在直線l上移動,R是線段PF與x軸的交點(diǎn),過R、P分別作直線l1、l2,使l1⊥PF,l2⊥ll1∩l2=Q.
(Ⅰ)求動點(diǎn)Q的軌跡C的方程;
(Ⅱ)在直線l上任取一點(diǎn)M做曲線C的兩條切線,設(shè)切點(diǎn)為A、B,求證:直線AB恒過一定點(diǎn);
(Ⅲ)對(Ⅱ)求證:當(dāng)直線MA,MF,MB的斜率存在時,直線MA,MF,MB的斜率的倒數(shù)成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,定點(diǎn)A和B都在平面α內(nèi),定點(diǎn)P∉α,PB⊥α,C是α內(nèi)異于A和B的動點(diǎn),且PC⊥AC.那么,動點(diǎn)C在平面α內(nèi)的軌跡是( 。
A.一條線段,但要去掉兩個點(diǎn)
B.一個圓,但要去掉兩個點(diǎn)
C.一個橢圓,但要去掉兩個點(diǎn)
D.半圓,但要去掉兩個點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在圓x2+y2=4上任取一點(diǎn)P,過點(diǎn)P作x軸的垂線段PD,D為垂足.當(dāng)點(diǎn)P在圓上運(yùn)動時,線段PD的中點(diǎn)M的軌跡是( 。
A.橢圓B.雙曲線C.拋物線D.圓

查看答案和解析>>

同步練習(xí)冊答案