某班準(zhǔn)備了5個(gè)節(jié)目將參加廈門一中音樂(lè)廣場(chǎng)活動(dòng)(此次活動(dòng)只有5個(gè)節(jié)目),節(jié)目順序有如下要求:節(jié)目甲必須排在前兩位、節(jié)目乙不能排在第一位,節(jié)目丙必須排在最后一位,則在這次活動(dòng)中節(jié)目順序的編排方案共有
 
種.
考點(diǎn):計(jì)數(shù)原理的應(yīng)用
專題:排列組合
分析:由題意知甲的位置影響乙的排列,分兩類:甲在第一位和甲不在第一位,根據(jù)分類計(jì)數(shù)原理得到結(jié)果.
解答: 解:由題意知甲的位置影響乙的排列,所以要分兩類:
一類為甲排在第一位,丙排在最后一位,則其余4個(gè)節(jié)目共有A33=6種,
另一類甲排在第二位,丙排在最后一位,從3,4位中排乙,其余2個(gè)節(jié)目排在剩下的2個(gè)位置,共有A21A22=4種,
∴故編排方案共有6+4=10種,
故答案為:10
點(diǎn)評(píng):本題主要考查排列組合基礎(chǔ)知識(shí),考查分類與分步計(jì)數(shù)原理,恰當(dāng)分類是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,C,D是兩個(gè)小區(qū)的所在地,C,D到一條公路AB的垂直距離CA=1km,DB=2km,AB兩端之間的距離為4km.某公交公司將在AB之間找一點(diǎn)N,在N處建造一個(gè)公交站臺(tái).
(1)設(shè)AN=x,試寫出用x表示∠CND正切的函數(shù)關(guān)系式,并給出x的范圍;
(2)是否存在x,使得∠CND與∠DNB相等.若存在,請(qǐng)求出x的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有甲、乙兩個(gè)班級(jí)進(jìn)行數(shù)學(xué)考試,按照大于或等于85分為優(yōu)秀,85分以下為非優(yōu)秀,統(tǒng)計(jì)成績(jī)后,得到如下的列聯(lián)表:
優(yōu)秀非優(yōu)秀總計(jì)
甲班10
乙班30
合計(jì)105
已知甲、乙兩個(gè)班級(jí)共有105人,從其中隨機(jī)抽取1人為優(yōu)秀的概率為
2
7

(Ⅰ)請(qǐng)完成上面的列聯(lián)表;
(Ⅱ)根據(jù)列聯(lián)表的數(shù)據(jù),若按95%的可靠性要求,能否認(rèn)為“成績(jī)與班級(jí)有關(guān)系”;k=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d;
P(k2≥k00.100.050.0250.010
k02.7063.8415.0246.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=log
1
2
(x2-4x-12)的單調(diào)遞增區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)α的終邊過(guò)點(diǎn)(1,2),則sinα=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是定義在R上的奇函數(shù),在(0,+∞)是增函數(shù),且f(1)=0,則f(x+1)<0的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在Rt△ABC中,∠A=30°,過(guò)直角頂點(diǎn)C作射線CM交線段AB于M,使|AM|>|AC|的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是定義域?yàn)镽的偶函數(shù),且f(x+2)=f(x),若f(x)在[-1,0]上是減函數(shù),那么f(x)在[2,3]上是
 
函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn=n2,△ABC中三邊之比為a:b:c=a2:a3:a4,則△ABC的最大內(nèi)角等于
 

查看答案和解析>>

同步練習(xí)冊(cè)答案