求函數(shù)y=
x2
x+3
在x=2處的切線方程.
考點(diǎn):利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程
專題:計(jì)算題,導(dǎo)數(shù)的概念及應(yīng)用
分析:欲求出切線方程,只須求出其斜率即可,故先利用導(dǎo)數(shù)求出在x=2處的導(dǎo)函數(shù)值,再結(jié)合導(dǎo)數(shù)的幾何意義即可求出切線的斜率.從而問(wèn)題解決.
解答: 解:∵函數(shù)y=
x2
x+3
,
∴y′=
2x(x+3)-x2
(x+3)2
,
x=2時(shí),y′=
16
25
,y=
4
5

∴函數(shù)y=
x2
x+3
在x=2處的切線方程y-
4
5
=
16
25
(x-2),即16x-25y-12=0.
點(diǎn)評(píng):本小題主要考查直線的斜率、導(dǎo)數(shù)的幾何意義、利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程等基礎(chǔ)知識(shí),考查運(yùn)算求解能力.屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

投資商到一開(kāi)發(fā)區(qū)投資72萬(wàn)元建起一座蔬菜加工廠,第一年共支出12萬(wàn)元,以后每年支出增加4萬(wàn)元,從第一年起每年蔬菜銷售收入50萬(wàn)元.設(shè)f(n)表示前n年的純利潤(rùn)總和(f(n)=前n年的總收入一前n年的總支出一投資額).
(1)該廠從第幾年開(kāi)始盈利?
(2)若干年后,投資商為開(kāi)發(fā)新項(xiàng)目,對(duì)該廠有兩種處理方案:①年平均純利潤(rùn)達(dá)到最大時(shí),以48萬(wàn)元出售該廠;②純利潤(rùn)總和達(dá)到最大時(shí),以10萬(wàn)元出售該廠,問(wèn)哪種方案更合算?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,an=
Sn
n
+2 (n-1)(n∈N*).
(1)求證:數(shù)列{an}為等差數(shù)列,并分別寫(xiě)出an和Sn關(guān)于n的表達(dá)式;
(2)是否存在自然數(shù)n,使得S1+
S2
2
+
S3
3
+…+
Sn
n
-(n-1)2=2013?若存在,求出n的值;若不存在,請(qǐng)說(shuō)明理由.
(3)設(shè)Cn=
2
n(an+7)
(n∈{N*}),Tn=c1+c2+c3+…+cn(n∈N*),是否存在最大的整數(shù)m,使得對(duì)任意n∈N*均有Tn
m
32
成立?若存在,求出m的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lnx+
a
x+1
,a為常數(shù).
(1)若a=
9
2
,求函數(shù)f(x)在[1,e]上的值域;(e為自然對(duì)數(shù)的底數(shù),e≈2.72)
(2)若函數(shù)g(x)=f(x)+x在[1,2]上為單調(diào)減函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求下列函數(shù)的導(dǎo)函數(shù):
①f(x)=x3+log2x;
②f(x)=
cosx
ex

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某同學(xué)在一次研究性學(xué)習(xí)中發(fā)現(xiàn),以下五個(gè)式子的值都等于同一個(gè)常數(shù):
①sin213°+cos217°-sin13°cos17°;
②sin215°+cos215°-sin15°cos15°;
③sin218°+cos212°-sin18°cos12°
④sin2(-18°)+cos248°-sin(-18°)cos48°
⑤sin2(-25°)+cos255°-sin(-25°)cos55°.
(1)利用計(jì)算器求出這個(gè)常數(shù);
(2)根據(jù)(1)的計(jì)算結(jié)果,請(qǐng)你寫(xiě)出一個(gè)三角恒等式,使得上述五個(gè)等式是這個(gè)恒等式的特殊情況;
(3)證明你寫(xiě)出的三角恒等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)過(guò)點(diǎn)A(2,3),且離心率e=
1
2

(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)是否存在過(guò)點(diǎn)B(0,-4)的直線l交橢圓于不同的兩點(diǎn)M、N,且滿足
OM
ON
=
16
7
(其中點(diǎn)O為坐標(biāo)原點(diǎn)),若存在,求出直線l的方程,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

選修4-2:矩陣與變換
若二階矩陣M滿足M
12
34
=
710
46

(Ⅰ)求二階矩陣M;
(Ⅱ)把矩陣M所對(duì)應(yīng)的變換作用在曲線3x2+8xy+6y2=1上,求所得曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在斜二測(cè)畫(huà)法中,一個(gè)平面圖形的直觀圖是邊長(zhǎng)為2的正三角形,則其面積為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案