已知函數(shù)f(x)=2x-1-log
1
2
x,則f(x)的零點(diǎn)的個(gè)數(shù)為( 。
A、0B、1C、2D、3
考點(diǎn):函數(shù)零點(diǎn)的判定定理
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:將求函數(shù)f(x)的零點(diǎn)問題轉(zhuǎn)化成求兩個(gè)函數(shù)的交點(diǎn)問題,畫出草圖,問題容易解出.
解答: 解:令g(x)=2x-1,h(x)=
log
x
1
2
,如圖示:
由圖象得:函數(shù)g(x)和函數(shù)h(x)有一個(gè)交點(diǎn),
即函數(shù)f(x)有一個(gè)零點(diǎn),
故選:B.
點(diǎn)評(píng):本題考察了函數(shù)的零點(diǎn)問題,滲透了轉(zhuǎn)化思想,數(shù)形結(jié)合思想,是一道基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)z=
i
1+i
(i是虛數(shù)單位)的虛部為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

二項(xiàng)式(x+1)8(x-1)展開式中x5的系數(shù)是(  )
A、-14B、14
C、-28D、28

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,集合A={x|y=ln(3x-1)},B={y|y=sin(x+2)},則(∁UA)∩B=(  )
A、(
1
3
,+∞)
B、(0,
1
3
]
C、[-1,
1
3
]
D、∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知有一個(gè)公園的形狀如圖所示,現(xiàn)有3種不同的植物藥種在此公園的A,B,C,D,E這五個(gè)區(qū)域內(nèi),要求有公共邊的兩塊相鄰區(qū)域不同的植物,則不同的種法共有(  )
A、16種B、18種
C、20種D、22種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

平面向量
a
=(2,1),
b
=(m2,m),若“m=2”是“
a
b
共線”的(  )
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(n)=(
1+i
1-i
n(n∈N*,i為虛數(shù)單位),則集合{x|x=f(n)}中元素的個(gè)數(shù)是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx-ax+
1-a
x
-1(a>0)

(1)設(shè)0<a<1,試討論f(x)單調(diào)性;
(2)設(shè)g(x)=x2-2bx+4,當(dāng)a=
1
4
時(shí),若?x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在學(xué)校組織的趣味數(shù)學(xué)知識(shí)競(jìng)賽中,甲、乙兩隊(duì)進(jìn)行比賽,約定先勝3局者獲得比賽的勝利,比賽隨即結(jié)束,根據(jù)分組情況知除第五局甲隊(duì)獲勝的概率是
1
2
外,其余每局比賽甲隊(duì)獲勝的概率都是
2
3
,假設(shè)各局比賽結(jié)果相互對(duì)立.
(1)分別求乙隊(duì)以3:0,3:1,3:2獲勝的概率;
(2)若比賽結(jié)果為3:0或3:1,則勝利方得3分、對(duì)方得0分;若比賽結(jié)果為3:2,則勝利方得2分、對(duì)方得1分.求甲隊(duì)得分X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案