【題目】已知一圓經(jīng)過點,,且它的圓心在直線.

I)求此圓的方程;

II)若點為所求圓上任意一點,且點,求線段的中點的軌跡方程.

【答案】1)(x﹣22+y﹣42=10.(2)(x﹣2+y﹣22=

【解析】

試題(1)首先設出方程,將點坐標代入得到關于參數(shù)的方程組,通過解方程組得到參數(shù)值,從而確定其方程;(2)首先設出點M的坐標,利用中點得到點D坐標,代入圓的方程整理化簡得到的中點M的軌跡方程

試題解析:()由已知可設圓心Na,3a﹣2),又由已知得|NA|=|NB|, 從而有,解得:a=2

于是圓N的圓心N2,4),半徑

所以,圓N的方程為(x﹣22+y﹣42=10.(6分)

2)設Mx,y),Dx1,y1),則由C30)及M為線段CD的中點得:,解得:. 又點D在圓N:(x﹣22+y﹣42=10上,所以有(2x﹣3﹣22+2y﹣42=10,化簡得:

故所求的軌跡方程為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,以原點O為極點,x軸的正半軸為極軸建立極坐標系,兩種坐標系中取相同的長度單位.已知直線l的參數(shù)方程為t為參數(shù)),曲線C的極坐標方程為ρ=4sinθ+).

(1)求直線l的普通方程與曲線C的直角坐標方程;

(2)若直線l與曲線C交于M,N兩點,求△MON的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】信息科技的進步和互聯(lián)網(wǎng)商業(yè)模式的興起,全方位地改變了大家金融消費的習慣和金融交易模式,現(xiàn)在銀行的大部分業(yè)務都可以通過智能終端設備完成,多家銀行職員人數(shù)在悄然減少.某銀行現(xiàn)有職員320人,平均每人每年可創(chuàng)利20萬元.據(jù)評估,在經(jīng)營條件不變的前提下,每裁員1人,則留崗職員每人每年多創(chuàng)利0.2萬元,但銀行需付下崗職員每人每年6萬元的生活費,并且該銀行正常運轉(zhuǎn)所需人數(shù)不得小于現(xiàn)有職員的,為使裁員后獲得的經(jīng)濟效益最大,該銀行應裁員多少人?此時銀行所獲得的最大經(jīng)濟效益是多少萬元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓經(jīng)過點,的四個頂點圍成的四邊形的面積為.

1)求的方程;

2)過的左焦點作直線交于、兩點,線段的中點為,直線為坐標原點)與直線相交于點,是否存在直線使得為等腰直角三角形,若存在,求出的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了保護學生的視力,課桌和椅子的高度都是按一定的關系配套設計的,研究表明:假設課桌的高度為,椅子的高度為,則y應是x的一次函數(shù),下表列出兩套符合條件的課桌和椅子的高度:

第一套

第二套

椅子高度

40.0

37.0

課桌高度

75.0

70.2

1)請你確定yx的函數(shù)關系式(不必寫出x的取值范圍);

2)現(xiàn)有一把高42.0 cm的椅子和一張高78.2cm的課桌,它們是否配套?為什么?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),,其中

(1)設兩曲線,有公共點,且在該點處的切線相同,用表示,并求的最大值;

(2)設,證明:若≥1,則對任意, ,有

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)是函數(shù)的導函數(shù),已知,且,則使得成立的的取值范圍是

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=xexax2x;

1)若fx)在x=﹣1處取得極值,求a的值及fx)的單調(diào)區(qū)間;

2)當x1時,fx)>0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)若函數(shù)存在不小于的極小值,求實數(shù)的取值范圍;

2)當時,若對,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案