對定義在區(qū)間l,上的函數(shù),若存在開區(qū)間和常數(shù)C,使得對任意的都有,且對任意的x(a,b)都有恒成立,則稱函數(shù)為區(qū)間I上的“Z型”函數(shù).
(I)求證:函數(shù)是R上的“Z型”函數(shù);
(Ⅱ)設(shè)是(I)中的“Z型”函數(shù),若不等式對任意的xR恒成立,求實(shí)數(shù)t的取值范圍.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
1 |
4 |
1 |
4 |
3 |
4 |
1 |
2 |
1 |
2 |
1 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 |
4 |
1 |
8 |
5 |
11 |
7 |
13 |
7 |
8 |
1 |
4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012高三數(shù)學(xué)一輪復(fù)習(xí)單元練習(xí)題 函數(shù)(6) 題型:044
設(shè)f(x)是定義在[0,1]上的函數(shù),若存在x*∈(0,1),使得f(x)在[0,x*]上單調(diào)遞增,在[x*,1]上單調(diào)遞減,則稱f(x)為[0,1]上的單峰函數(shù),x*為峰點(diǎn),包含峰點(diǎn)的區(qū)間為含峰區(qū)間.
對任意的[0,l]上的單峰函數(shù)f(x),下面研究縮短其含峰區(qū)間長度的方法.
(1)證明:對任意的x1,x2∈(0,1),x1<x2,若f(x1)≥f(x2),則(0,x2)為含峰區(qū)間;若f(x1)≤f(x2),則(x*,1)為含峰區(qū)間;
(2)對給定的r(0<r<0.5=,證明:存在x1,x2∈(0,1),滿足x2-x1≥2r,使得由(Ⅰ)所確定的含峰區(qū)間的長度不大于0.5+r;
(3)選取x1,x2∈(0,1),x1<x2,由(Ⅰ)可確定含峰區(qū)間為(0,x2)或(x1,1),在所得的含峰區(qū)間內(nèi)選取x3,由x3與x1或x3與x2類似地可確定一個新的含峰區(qū)間.在第一次確定的含峰區(qū)間為(0,x2)的情況下,試確定x1,x2,x3的值,滿足兩兩之差的絕對值不小于0.02,且使得新的含峰區(qū)間的長度縮短到0.34.(區(qū)間長度等于區(qū)間的右端點(diǎn)與左端點(diǎn)之差)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:安徽省安慶市示范高中09-10學(xué)年高一五校協(xié)作期中考試 題型:解答題
設(shè)f(x)是定義在[0,1]上的函數(shù),若存在x*∈(0,1),使得f(x)在[0, x*]上單調(diào)遞增,在[x*,1]上單調(diào)遞減,則稱f(x)為[0,1]上的單峰函數(shù),x*為峰點(diǎn),包含峰點(diǎn)的區(qū)間為含峰區(qū)間.對任意的[0,l]上的單峰函數(shù)f(x),下面研究縮短其含峰區(qū)間長度的方法.
(1)證明:對任意的x1,x2∈(0,1),x1<x2,若f(x1)≥f(x2),則(0,x2)為含峰區(qū)間;若f(x1)≤f(x2),則(x*,1)為含峰區(qū)間;
(2)對給定的r(0<r<0.5=,證明:存在x1,x2∈(0,1),滿足x2-x1≥2r,使得由
(I)所確定的含峰區(qū)間的長度不大于0.5+r;
(3)選取x1,x2∈(0,1),x1<x2,由(I)可確定含峰區(qū)間為(0,x2)或(x1,1),在所得的含峰區(qū)間內(nèi)選取x3,由x3與x1或x3與x2類似地可確定一個新的含峰區(qū)間.在第一次確定的含峰區(qū)間為(0,x2)的情況下,試確定x1,x2,x3的值,滿足兩兩之差的絕對值不小于0.02,且使得新的含峰區(qū)間的長度縮短到0.34.(區(qū)間長度等于區(qū)間的右端點(diǎn)與左端點(diǎn)之差)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com