【題目】已知函數(shù),有下列四個(gè)命題:

①函數(shù)是奇函數(shù);

②函數(shù)是單調(diào)函數(shù);

③當(dāng)時(shí),函數(shù)恒成立;

④當(dāng)時(shí),函數(shù)有一個(gè)零點(diǎn),

其中正確的是____________

【答案】③④

【解析】

①根據(jù)的關(guān)系即可判斷;②當(dāng)時(shí),,對(duì)求導(dǎo)可得,設(shè),顯然連續(xù),利用零點(diǎn)存在性定理可得存在,使得,即可判斷時(shí)的單調(diào)性,進(jìn)而判斷②;由②可知當(dāng)時(shí),的最小值,判斷是否成立即可判斷③;利用零點(diǎn)存在性定理即可判斷④.

由題,的定義域?yàn)?/span>,

,,所以不是奇函數(shù),故①錯(cuò)誤;

,當(dāng)時(shí),,

,

,,,

所以存在,使得,

所以當(dāng)時(shí),,是單調(diào)減函數(shù);

當(dāng)時(shí),,是單調(diào)增函數(shù),

所以②錯(cuò)誤;

③由②可知,當(dāng)時(shí),上有最小值,,

所以,

因?yàn)?/span>,

,,,

所以,

所以當(dāng)時(shí),恒成立,故③正確;

④當(dāng)時(shí),,,,

所以內(nèi)有一個(gè)零點(diǎn),故④正確.

故答案為:③④

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某品種一批樹苗生長(zhǎng)情況,在該批樹苗中隨機(jī)抽取了容量為120的樣本,測(cè)量樹苗高度(單位:),經(jīng)統(tǒng)計(jì),其高度均在區(qū)間內(nèi),將其按分成6組,制成如圖所示的頻率分布直方圖.其中高度為及以上的樹苗為優(yōu)質(zhì)樹苗.

試驗(yàn)區(qū)

試驗(yàn)區(qū)

合計(jì)

優(yōu)質(zhì)樹苗

20

非優(yōu)質(zhì)樹苗

60

合計(jì)

1)求圖中的值,并估計(jì)這批樹苗高度的中位數(shù)和平均數(shù)(同一組數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

2)已知所抽取的這120棵樹苗來(lái)自于,兩個(gè)試驗(yàn)區(qū),部分?jǐn)?shù)據(jù)如上列聯(lián)表:將列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為優(yōu)質(zhì)樹苗與兩個(gè)試驗(yàn)區(qū)有關(guān)系,并說(shuō)明理由.

參考數(shù)據(jù):

0.15

010

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參考公式:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓右焦點(diǎn),離心率為,過(guò)作兩條互相垂直的弦,設(shè)中點(diǎn)分別為

(1) 求橢圓的標(biāo)準(zhǔn)方程;

(2)求以為頂點(diǎn)的四邊形的面積的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,為等腰直角三角形,DAC上一點(diǎn),將沿BD折起,得到三棱錐,且使得在底面BCD的投影E在線段BC上,連接AE.

1)證明:

2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知圓的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為,設(shè)圓與圓的公共弦所在直線為.

1)求直線的極坐標(biāo)方程;

2)若以坐標(biāo)原點(diǎn)為中心,直線順時(shí)針?lè)较蛐D(zhuǎn)后與圓、圓分別在第一象限交于、兩點(diǎn),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)若曲線在點(diǎn)處的切線方程為,求的值;

2)當(dāng)時(shí),求證:;

3)設(shè)函數(shù),其中為實(shí)常數(shù),試討論函數(shù)的零點(diǎn)個(gè)數(shù),并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某面包推出一款新面包,每個(gè)面包的成本價(jià)為4元,售價(jià)為10元,該款面包當(dāng)天只出一爐(一爐至少15個(gè),至多30個(gè)),當(dāng)天如果沒有售完,剩余的面包以每個(gè)2元的價(jià)格處理掉,為了確定這一爐面包的個(gè)數(shù),該店記錄了這款新面包最近30天的日需求量(單位:個(gè)),整理得下表:

(1)根據(jù)表中數(shù)據(jù)可知,頻數(shù)與日需求量(單位:個(gè))線性相關(guān),求關(guān)于的線性回歸方程;

(2)以30天記錄的各日需求量的頻率代替各日需求量的概率,若該店這款新面包出爐的個(gè)數(shù)為24,記當(dāng)日這款新面包獲得的總利潤(rùn)為(單位:元).

(。┤羧招枨罅繛15個(gè),求;

(ⅱ)求的分布列及其數(shù)學(xué)期望.

相關(guān)公式: ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某次考試,班主任從全班同學(xué)中隨機(jī)抽取一個(gè)容量為8的樣本,他們的數(shù)學(xué)物理分?jǐn)?shù)對(duì)應(yīng)如下表:

學(xué)生編號(hào)

1

2

3

4

5

6

7

8

數(shù)學(xué)分?jǐn)?shù)

60

65

70

75

80

85

90

95

物理分?jǐn)?shù)

72

77

80

84

88

90

93

95

繪出散點(diǎn)圖如下:

根據(jù)以上信息,判斷下列結(jié)論:

①根據(jù)此散點(diǎn)圖,可以判斷數(shù)學(xué)成績(jī)與物理成績(jī)具有線性相關(guān)關(guān)系;

②根據(jù)此散點(diǎn)圖,可以判斷數(shù)學(xué)成績(jī)與物理成績(jī)具有一次函數(shù)關(guān)系;

③甲同學(xué)數(shù)學(xué)考了80分,那么,他的物理成績(jī)一定比數(shù)學(xué)只考了60分的乙同學(xué)的物理成績(jī)要高.

其中正確的個(gè)數(shù)為( .

A.0B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐PABCD中,底面ABCD是直角梯形,∠DAB90°ADBCAD⊥側(cè)面PAB,△PAB是等邊三角形,DAAB2,BC,E是線段AB的中點(diǎn).

1)求證:PECD

2)求PC與平面PDE所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案