精英家教網 > 高中數學 > 題目詳情
關于直線a,b,c以及平面M,N,給出下面命題:
①若a∥M,b∥M,則a∥b   
②若a∥M,b⊥M,則b⊥a    
③若a∥M,b⊥M,且c⊥a,c⊥b,則c⊥M    
④若a⊥M,a∥N,則M⊥N,
其中正確命題的個數為( )
A.0個
B.1個
C.2個
D.3個
【答案】分析:由線面平行的性質,我們可判斷①的正誤,由線線垂直的判定方法,可判斷②的對錯,根據線面平行的性質,我們可判斷③的真假,由面面垂直的判定方法,可以判斷④的對錯.由此即可得到結論.
解答:解:①中a與b可以相交或平行或異面,故①錯.
②由于a∥M,b⊥M,則由線線垂直的判定方法得到b⊥a,故②正確;
③若a∥M,b⊥M,且c⊥a,c⊥b,則c可能在平面M內或與M平行,故③錯.
④由于a⊥M,a∥N,則由面面垂直的判定方法得到M⊥N,可得④正確;
故選C
點評:本題考查的知識點是平面與平面之間的位置關系,空間中直線與直線之間的位置關系,空間中直線與平面之間的位置關系,熟練掌握空間線面之間關系的判定方法及性質定理是解答此類問題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

定義在R上的函數f(x)滿足:f(x+2)+f(x)=0,且函數f(x+1)為奇函數,對于下列命題:
①函數f(x)是以T=2為周期的函數;
②函數f(x)的圖象關于點(1,0)對稱;
③函數f(x)的圖象關于直線x=2對稱;
④函數f(x)的最大值為f(2);
⑤f(2011)=0.
其中正確結論的序號為( 。
A、①③⑤B、②③⑤C、②③④D、①④⑤

查看答案和解析>>

科目:高中數學 來源: 題型:

選做題(考生只能從A,B,C中選做一題,多做以所做第一題記分)
A.(不等式選做題)
已知a∈R,若關于x的方程x2+4x+|a-1|+|a+1|=0無實根,則a的取值范圍是
(-∞,-2)∪(2,+∞)
(-∞,-2)∪(2,+∞)

B.(幾何證明選做題)
如圖,CD是圓O的切線,切點為C,點A、B在圓O上,BC=1,∠BCD=30°,則圓O的面積為
π
π

C.(坐標系與參數方程選做題)
在極坐標系中,若過點(1,0)且與極軸垂直的直線交曲線ρ=4cosθ于A、B兩點,則|AB|=
2
3
2
3

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•宿遷一模)【選做題】本題包括A、B、C、D四小題,請選定其中兩題,并在相應的答題區(qū)域內作答.若多做,則按作答的前兩題評分.解答時應寫出文字說明、證明過程或演算步驟.
A.選修4-1:幾何證明選講
如圖,已知AB,CD是圓O的兩條弦,且AB是線段CD的 垂直平分線,若AB=6,CD=2
5
,求線段AC的長度.
B.選修4-2:矩陣與變換(本小題滿分10分)
已知矩陣M=
21
1a
的一個特征值是3,求直線x-2y-3=0在M作用下的新直線方程.
C.選修4-4:坐標系與參數方程(本小題滿分10分)
在平面直角坐標系xOy中,已知曲線C的參數方程是
x=cosα
y=sinα+1
(α是參數),若以O為極點,x軸的正半軸為極軸,取與直角坐標系中相同的單位長度,建立極坐標系,求曲線C的極坐標方程.
D.選修4-5:不等式選講(本小題滿分10分)
已知關于x的不等式|ax-1|+|ax-a|≥1的解集為R,求正實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=sin(ωx+?)(ω>0,-
π
2
<?<
π
2
)
,給出以下四個論斷:
①它的圖象關于直線x=
π
12
對稱;
②它的圖象關于點(
π
3
,0)對稱;
③它的最小正周期是π;
④在區(qū)間[-
π
6
,0
]上是增函數.
以其中兩個論斷作為條件,余下論斷作為結論,一個正確的命題:
條件
3
,結論
A、①②⇒③④
B、③④⇒①②
C、②④⇒①③
D、①③⇒②④

查看答案和解析>>

科目:高中數學 來源: 題型:

拋物線P:x2=2py上一點Q(m,2)到拋物線P的焦點的距離為3,A、B、C、D為拋物線的四個不同的點,其中A、D關于y軸對稱,D(x0,y0),B(x1,y1),C(x2,y2),-x0<x1<x0<x2,直線BC平行于拋物線P的以D為切點的切線.
(1)求p的值;
(2)證明:∠BAC的角平分線在直線AD上;
(3)D到直線AB、AC的距離分別為m、n,且m+n=
2
|AD|
,△ABC的面積為48,求直線BC的方程.

查看答案和解析>>

同步練習冊答案