某少數(shù)民族的刺繡有著悠久的歷史,下圖(1)、(2)、(3)、(4)為她們刺繡最簡(jiǎn)單的四個(gè)圖案,這些圖案都由小正方形構(gòu)成,小正方形數(shù)越多刺繡越漂亮,現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第n個(gè)圖形包含f(n)個(gè)小正方形.
(1) 求出,
并猜測(cè)
的表達(dá)式;
(2) 求證:+
+
+…+
.
(1) f(2)=5,f(3)=13,f(4)=25,f(5)=25+4×4=41. f(n)=2n2-2n+1.
(2)略
【解析】本試題主要是考查了數(shù)列的歸納猜想思想的運(yùn)用,根據(jù)前幾項(xiàng)。來(lái)猜想并運(yùn)用數(shù)學(xué)歸納法加以證明。
(1)結(jié)合題目中的 遞推關(guān)系式可知前幾項(xiàng)的值,并猜想結(jié)論。
(2)分為兩步驟進(jìn)行,先證明n取第一個(gè)值時(shí)成立,再假設(shè)n=k時(shí)成立,證明n=k+1時(shí)也成立即可。
解析:(1)∵ f(1)=1,f(2)=5,f(3)=13,f(4)=25,
∴ f(5)=25+4×4=41.
(2)∵ f(2)-f(1)=4=4×1,f(3)-f(2)=8=4×2,
f(4)-f(3)=12=4×3,f(5)-f(4)=16=4×4,
由上式規(guī)律得出f(n+1)-f(n)=4n.
∴ f(n)-f(n-1)=4(n-1),f(n-1)-f(n-2)=4·(n-2),
f(n-2)-f(n-3)=4·(n-3),…
f(2)-f(1)=4×1,∴ f(n)-f(1)=4[(n-1)+(n-2)+…+2+1]=2(n-1)·n,∴ f(n)=2n2-2n+1(n≥2),又n=1時(shí),f(1)也適合f(n).∴ f(n)=2n2-2n+1.
(3)當(dāng)n≥2時(shí),==,
∴ +++…+=1+
=1+=-.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
1 |
f(1) |
1 |
f(2)-1 |
1 |
f(3)-1 |
1 |
f(n)-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年福建省高三高考?jí)狠S考試文科數(shù)學(xué)試卷(解析版) 題型:填空題
某少數(shù)民族的刺繡有著悠久的歷史,下圖(1)、(2)、(3)、(4)為她們刺繡最簡(jiǎn)單的四個(gè)圖案,這些圖案都是由小正方形構(gòu)成,小正方形數(shù)越多刺繡越漂亮;現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第個(gè)圖形包含
個(gè)小正方形,則
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com