在△ABC中,a、b邊是方程x2-2
3
x+2=0的兩個(gè)根,且2cos(A+B)=1.
(1)求角C的度數(shù);
(2)求c邊的長(zhǎng)度.
考點(diǎn):余弦定理,運(yùn)用誘導(dǎo)公式化簡(jiǎn)求值
專題:解三角形
分析:(1)利用誘導(dǎo)公式求得cosC=-cos(A+B)進(jìn)而根據(jù)已知條件求得cos(A+B)的值,求得cosC的值,則C可求得.
(2)利用韋達(dá)定理求得a+b和ab出值,進(jìn)而利用余弦定理求得AB的值.
解答: 解:(1)cosC=cos(π-A-B)=-cos(A+B)=-
1
2
,
∴C=
3

(2)由題設(shè):
a+b=2
3
ab=2

∴AB2=AC2+BC2-2AC•BC•cosC=a2+b2-2abcos
3
=a2+b2+ab=(a+b)2-ab=12-2=10
∴AB=
10
點(diǎn)評(píng):本題主要考查了余弦定理的應(yīng)用,二次方程的相關(guān)問(wèn)題.考查了學(xué)生綜合運(yùn)用所學(xué)知識(shí)解決問(wèn)題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在平面直角坐標(biāo)系xOy中,過(guò)橢圓E:
x2
4
+
y2
3
=1內(nèi)一點(diǎn)P(1,1)的一條直線與橢圓交于點(diǎn)A,C,且
AP
PC
,其中λ為常數(shù).
(1)求橢圓E的離心率;
(2)當(dāng)點(diǎn)C恰為橢圓的右頂點(diǎn)時(shí),試確定對(duì)應(yīng)λ的值;
(3)當(dāng)λ=1時(shí),求直線AC的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
OA
=(1,-2),
OB
=(4,-1),
OC
=(m,m+1).
(1)若
AB
OC
,求實(shí)數(shù)m的值;
(2)若△ABC為直角三角形,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-(a+1)x+a,
(1)當(dāng)a=2時(shí),求關(guān)于x的不等式f(x)>0的解集;
(2)求關(guān)于x的不等式f(x)<0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某種汽車購(gòu)買時(shí)費(fèi)用為22.5萬(wàn)元,每年應(yīng)交付保險(xiǎn)費(fèi)、養(yǎng)路費(fèi)及汽油費(fèi)共0.8萬(wàn)元,汽車的維修費(fèi)為:第一年0.1萬(wàn)元,第二年0.3萬(wàn)元,第三年0.5萬(wàn)元,…,依等差數(shù)列逐年遞增.
(Ⅰ)設(shè)使用n年該車的總費(fèi)用(包括購(gòu)車費(fèi)用)為f(n),試寫出f(n)的表達(dá)式;
(Ⅱ)求這種汽車使用多少年報(bào)廢最合算(即該車使用多少年平均費(fèi)用最少).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2x
x+1
,求與該函數(shù)關(guān)于直線x=2對(duì)稱的函數(shù)解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)x,y滿足
x-y≤2
x+y≥6
x≥0
,則目標(biāo)函數(shù)z=x+2y的最小值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若正數(shù)m、n滿足m+n=2,則mn的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法正確的命題有
 

(1)若m∥α,n∥β且α∥β,則m∥n
(2)若m?α,n?α,m∥β,n∥β,則α∥β
(3)已知直線l與平面α垂直,直線m?α,則直線l與直線m垂直
(4)若直線l1與l2垂直,則有k1k2=-1.

查看答案和解析>>

同步練習(xí)冊(cè)答案