精英家教網 > 高中數學 > 題目詳情

在平面直角坐標系xOy中,橢圓G的中心為坐標原點,左焦點為F1(-1,0),P為橢圓G的上頂點,且∠PF1O=45°.

(Ⅰ)求橢圓G的標準方程;

(Ⅱ)已知直線l1:y=kx+m1與橢圓G交于A,B兩點,直線l2:y=kx+m2(m1≠m2)與橢圓G交于C,D兩點,且|AB|=|CD|,如圖所示.

(ⅰ)證明:m1+m2=0;

(ⅱ)求四邊形ABCD的面積S的最大值.

答案:
解析:

  (Ⅰ)解:設橢圓的標準方程為

  因為,,

  所以

  所以,2分

  所以橢圓的標準方程為,3分

  (Ⅱ)設,,

  (ⅰ)證明:由消去得:

  則,

  ;5分

  所以

  

  

  

  同理.7分

  因為,

  所以

  因為,

  所以,9分

  (ⅱ)解:由題意得四邊形是平行四邊形,設兩平行線間的距離為,則

  因為

  所以.10分

  所以

  

  (或)

  所以當時,四邊形的面積取得最大值為.13分


練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

在平面直角坐標系xoy中,已知圓心在直線y=x+4上,半徑為2
2
的圓C經過坐標原點O,橢圓
x2
a2
+
y2
9
=1(a>0)
與圓C的一個交點到橢圓兩焦點的距離之和為10.
(1)求圓C的方程;
(2)若F為橢圓的右焦點,點P在圓C上,且滿足PF=4,求點P的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,在平面直角坐標系xOy中,銳角α和鈍角β的終邊分別與單位圓交于A,B兩點.若點A的橫坐標是
3
5
,點B的縱坐標是
12
13
,則sin(α+β)的值是
16
65
16
65

查看答案和解析>>

科目:高中數學 來源: 題型:

在平面直角坐標系xOy中,若焦點在x軸的橢圓
x2
m
+
y2
3
=1
的離心率為
1
2
,則m的值為
4
4

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•泰州三模)選修4-4:坐標系與參數方程
在平面直角坐標系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
3t
,0)
,其中t≠0.設直線AC與BD的交點為P,求動點P的軌跡的參數方程(以t為參數)及普通方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•東莞一模)在平面直角坐標系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點為F1(-1,0),且橢圓C的離心率e=
1
2

(1)求橢圓C的方程;
(2)設橢圓C的上下頂點分別為A1,A2,Q是橢圓C上異于A1,A2的任一點,直線QA1,QA2分別交x軸于點S,T,證明:|OS|•|OT|為定值,并求出該定值;
(3)在橢圓C上,是否存在點M(m,n),使得直線l:mx+ny=2與圓O:x2+y2=
16
7
相交于不同的兩點A、B,且△OAB的面積最大?若存在,求出點M的坐標及對應的△OAB的面積;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案