已知函數(shù)數(shù)學(xué)公式,且f(1)=2
(1)求實(shí)數(shù)a的值;
(2)判斷f(x)的奇偶性;
(3)判斷函數(shù)f(x)在(1,+∞)上是增函數(shù)還是減函數(shù)?并用定義證明.

解:(1)由題意f(1)=1+a=2,∴a=1
(2)f(x)是奇函數(shù),因?yàn)?img class='latex' src='http://thumb.zyjl.cn/pic5/latex/521678.png' />,故其是奇函數(shù);
(3)函數(shù)f(x)在(1,+∞)上是單調(diào)增函數(shù),下用定義法證明
作取x1,x2∈(1,+∞),且x1<x2
f(x1)-f(x2)=x1-x2+=(x1-x2)(1-
∵1<x1<x2,∴x1-x2<0,1->0
∴f(x1)-f(x2)<0
即函數(shù)f(x)在(1,+∞)上是單調(diào)增函數(shù),
分析:(1)求實(shí)數(shù)a的值,由f(1)=2即可求得;
(2)判斷f(x)的奇偶性可利用f(x)+f(-x)=0證明其為奇函數(shù);
(3)先判斷出其在(1,+∞)上是增函數(shù),再利用定義法證明.
點(diǎn)評(píng):本題考查函數(shù)的奇偶性與單調(diào)性,求解本題的關(guān)鍵是掌握函數(shù)奇偶性的判斷方法以及函數(shù)單調(diào)性的證明方法定義法.屬于考查基本概念的題型.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省黃山市屯溪一中高三(上)第三次月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知函數(shù),且f(1)=log162,f(-2)=1.
(1)求函數(shù)f(x)的表達(dá)式;
(2)若數(shù)列xn的項(xiàng)滿足xn=[1-f(1)]•[1-f(2)]•…•[1-f(n)],試求x1,x2,x3,x4;
(3)猜想數(shù)列xn的通項(xiàng),并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省舟山市岱山縣大衢中學(xué)高一(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù),且f(1)=2,
(1)求a、b的值;
(2)判斷函數(shù)f(x)的奇偶性;
(3)判斷f(x)在(1,+∞)上的單調(diào)性并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省阜陽三中高一(上)第一次調(diào)研數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù),且f(1)=2,
(1)求a、b的值;
(2)判斷f(x)在(1,+∞)上的單調(diào)性并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江西省南昌外國語學(xué)校高三(上)11月月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù),且f(1)=1,f(-2)=4.
(1)求a、b的值;
(2)已知定點(diǎn)A(1,0),設(shè)點(diǎn)P(x,y)是函數(shù)y=f(x)(x<-1)圖象上的任意一點(diǎn),求|AP|的最小值,并求此時(shí)點(diǎn)P的坐標(biāo);
(3)當(dāng)x∈[1,2]時(shí),不等式恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省中山實(shí)驗(yàn)高中高一(上)10月段考試數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù),且f(1)=3
(I)求a的值;
(II)判斷函數(shù)的奇偶性;
(III)判斷函數(shù)f(x)在(1,+∞)上是增函數(shù)還是減函數(shù)?并證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案