【題目】已知橢圓 的焦距為2,過短軸的一個端點與兩個焦點的圓的面積為,過橢圓的右焦點作斜率為)的直線與橢圓相交于、兩點,線段的中點為

(1)求橢圓的標準方程;

(2)過點垂直于的直線與軸交于點,求的值.

【答案】(1)橢圓的方程為.(2)

【解析】試題分析:(1)建立方程組, , 橢圓的方程為;(2)聯(lián)立直線的方程和橢圓方程得, 為線段的中點,再求得的方程為

試題解析:

(1)過短軸的一個端點與兩個焦點的圓的半徑為,設右焦點的坐標為,依題意知,

,解得, , ,

所以橢圓的方程為

(2)設過橢圓的右焦點的直線的方程為

將其代入,得,

, ,

,

,

因為為線段的中點,

故點的坐標為,

又直線的斜率為

直線的方程為

,得,由點的坐標為

,解得

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】將5個小球放到3個盒子中,在下列條件下,各有多少種投放方法?
①小球不同,盒子不同,盒子不空;
②小球不同,盒子不同,盒子可空;
③小球不同,盒子相同,盒子不空;
④小球不同,盒子相同,盒子可空;
⑤小球相同,盒子不同,盒子不空;
⑥小球相同,盒子不同,盒子可空;
⑦小球相同,盒子相同,盒子不空;
⑧小球相同,盒子相同.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知全集為實數(shù)集R,集合A={x|y= + },B={x|log2x>1}.
(1)分別求A∩B,(RB)∪A;
(2)已知集合C={x|1<x<a},若CA,求實數(shù)a的取值集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列各組函數(shù)中,表示同一函數(shù)的是( 。
A.y= 與y=
B.y=lnex與y=elnx
C.y= 與y=x+3
D.y=x0與y=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)若曲線處的切線與直線垂直,求的單調區(qū)間;

(2)求證: 恒成立的充要條件是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù) 的定義域為A,函數(shù)g(x)=lg(x﹣1),x∈[2,11]的值域為B,則A∩B為( 。
A.(﹣∞,1)
B.(﹣∞,1]
C.[0,1]
D.(0,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我校要從參加數(shù)學競賽的1000名學生中,隨機抽取50名學生的成績進行分析,現(xiàn)將參加數(shù)學競賽的1000名學生編號如下000,001,002,…,999,如果在第一組隨機抽取的一個號碼為015,則抽取的第40個號碼為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,以原點O為極點,x軸的非負半軸為極軸建立極坐標系,已知點A的極坐標為( , ),直線l的極坐標方程為ρcos(θ﹣ )=a,且點A在直線l上.
(1)求a的值及直線l的直角坐標方程;
(2)若圓C的參數(shù)方程為 (α為參數(shù)),試判斷直線l與圓C的位置關系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)當時,求曲線在點處的切線方程;

(2)若有兩個零點,求的取值范圍.

查看答案和解析>>

同步練習冊答案