2.圓的極坐標方程為ρ=2(cosθ+sinθ),則該圓的圓心極坐標是(  )
A.$({1,\frac{π}{4}})$B.($\sqrt{2}$,$\frac{π}{4}$)C.($\frac{1}{2}$,$\frac{π}{4}$)D.$({2,\frac{π}{4}})$

分析 由極坐標方程求出圓的直角坐標方程,從而求出該圓的圓心平面直角坐標,由此能求出該圓的圓心極坐標.

解答 解:∵極坐標方程為ρ=2(cosθ+sinθ),
∴ρ2=2ρcosθ+2ρsinθ,
∴x2+y2=2x+2y,
∴x2+y2-2x-2y=0,
∴該圓的圓心平面直角坐標為(1,1),
∴該圓的圓心極坐標為($\sqrt{2}$,$\frac{π}{4}$).
故選:B.

點評 本題考查圓的圓心極坐標的求法,是基礎(chǔ)題,解題時要認真審題,注意極坐標方程和直角坐標方程的互化公式的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)f(x)=tan(x-$\frac{π}{3}$),一條與x軸平行的直線與函數(shù)f(x)的圖象相交,則相鄰的兩個交點之間的距離為π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)函數(shù)$f(x)=\frac{{a{x^2}-b}}{x}$,曲線y=f(x)在點(2,f(2))處的切線方程為7x-4y-12=0,則f(x)的解析式為f(x)=x-$\frac{3}{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.函數(shù)y=log0.5(sin2x+cos2x)單調(diào)減區(qū)間為(kπ-$\frac{π}{8}$,kπ+$\frac{π}{8}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)函數(shù)y=f(x)可導(dǎo),則$\lim_{△x→0}\frac{f(1+3△x)-f(1)}{3△x}$等于(  )
A.f'(1)B.3f'(1)C.$\frac{1}{3}f'(1)$D.以上都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3,求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.(1)a,b,c∈R+,求證:$\frac{1}{a}+\frac{1}+\frac{1}{c}≥\frac{1}{{\sqrt{ab}}}+\frac{1}{{\sqrt{bc}}}+\frac{1}{{\sqrt{ac}}}$
(2)若x,y∈R.求證:sinx+siny≤1+sinxsiny.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.如果△A1B1C1的三個內(nèi)角的余弦值分別等于△A2B2C2的三個內(nèi)角的正弦值,則下列結(jié)論正確的是④.
①△A1B1C1和△A2B2C2都是銳角三角形
②△A1B1C1和△A2B2C2都是鈍角三角形
③△A1B1C1是鈍角三角形,△A2B2C2是銳角三角形
④△A1B1C1是銳角三角形,△A2B2C2是鈍角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知三棱錐A-BCD內(nèi)接于球O,AB=AD=AC=BD=$\sqrt{3}$,∠BCD=60°,則球O的體積為$\frac{9\sqrt{2}π}{8}$.

查看答案和解析>>

同步練習(xí)冊答案