精英家教網 > 高中數學 > 題目詳情

【題目】已知四棱錐,底面是菱形,平面,點中點,點中點.

(1) 證明:平面平面

(2) 求二面角的平面角的余弦值.

【答案】(1)證明見解析;(2).

【解析】

(1)先由已知條件證明為等邊三角形,可得,利用線面垂直的的性質可證,得到,進而證明面;(2)先由二面角的定義找出二面角的平面角,利用余弦定理可求出此角的余弦值.

(1)證明:連BD.∵AB=AD,∠DAB=60°,

∴△ADB為等邊三角形,∴E是AB中點.∴AB⊥DE,∵PD⊥面ABCD,AB面ABCD,∴AB⊥PD.

∵DE面PED,PD面PED,DE∩PD=D,

∴AB⊥面PED,∵AB面PAB.∴面PED⊥面PAB.

(2)解:∵AB⊥平面PED,PE面PED,∴AB⊥PE.連結EF,∵ EF面PED,∴AB⊥EF.

∴ ∠PEF為二面角P-AB-F的平面角.

設AD=2,那么PF=FD=1,DE=

在△PEF中,PE=,EF=2,PF=1

∴cos∠PEF=

即二面角P-AB-F的平面角的余弦值為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數 f(x)=ex(ex﹣a)﹣a2x.(12分)
(1)討論 f(x)的單調性;
(2)若f(x)≥0,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設數列{an}的前n項和為Sn , 已知S2=6,an+1=4Sn+1,n∈N*
(1)求通項an;
(2)設bn=an﹣n﹣4,求數列{|bn|}的前n項和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】袋中有大小、形狀相同的紅、黑球各一個,現一次有放回地隨機摸取3次,每次摸取一個球

I)試問:一共有多少種不同的結果?請列出所有可能的結果;

)若摸到紅球時得2分,摸到黑球時得1分,求3次摸球所得總分為5的概率。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=ln(x﹣1)﹣kx+k+1.
(1)當k=1時,證明:f(x)≤0;
(2)求函數f(x)的單調區(qū)間;
(3)證明: + +…+ (n∈N* , 且n≥2).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=x﹣klnx,(常數k>0).
(1)試確定函數f(x)的單調區(qū)間;
(2)若對于任意x≥1,f(x)>0恒成立,試確定實數k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某圓柱的高為2,底面周長為16,其三視圖如圖所示,圓柱表面上的點在正視圖上的對應點為,圓柱表面上的點在左視圖上的對應點為,則在此圓柱側面上,從的路徑中,最短路徑的長度為( )

A. B. C. D. 2

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PA⊥AD,AB∥CD,CD⊥AD,AD=CD=2AB=2,E,F分別為PC,CD的中點,DE=EC.

(1)求證:平面ABE⊥平面BEF;
(2)設PA=a,若平面EBD與平面ABCD所成銳二面角 ,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知向量 =(cos ,﹣1), =( sin ,cos2 ),設函數f(x)= +1.
(1)若x∈[0, ],f(x)= ,求cosx的值;
(2)在△ABC中,角A,B,C的對邊分別是a,b,c,且滿足2bcosA≤2c﹣ a,求f(B)的取值范圍.

查看答案和解析>>

同步練習冊答案