【題目】已知命題p:對數(shù)有意義;命題q:實數(shù)t滿足不等式.
(Ⅰ)若命題p為真,求實數(shù)的取值范圍;
(Ⅱ)若命題p是命題q的充分不必要條件,求實數(shù)的取值范圍.
【答案】(1) (2)
【解析】試題分析:(1)-2t2+7t-5>0,解得1<t<;(2)1<t<是不等式t2-(a+3)t+(a+2)<0解集的真子集,方程t2-(a+3)t+(a+2)=0兩根為1,a+2,故只需a+2>,解得a>.
試題解析:
解:(1)由對數(shù)式有意義得-2t2+7t-5>0,
解得1<t<,即實數(shù)t的取值范圍是.
(2)∵命題p是命題q的充分不必要條件,
∴1<t<是不等式t2-(a+3)t+(a+2)<0解集的真子集.
法一:因為方程t2-(a+3)t+(a+2)=0兩根為1,a+2,故只需a+2>,
解得a>.
即a的取值范圍是.
法二:令f(t)=t2-(a+3)t+(a+2),因
f(1)=0,故只需f<0,解得a>.
即a的取值范圍是.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義在上的偶函數(shù),且當(dāng)時, .現(xiàn)已畫出函數(shù)在軸左側(cè)的圖象,如圖所示,并根據(jù)圖象:
(1)直接寫出函數(shù), 的增區(qū)間;
(2)寫出函數(shù), 的解析式;
(3)若函數(shù), ,求函數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體中,底面為正方形,四邊形是矩形,平面平面.
(1)求證:平面平面;
(2)若過直線的一個平面與線段和分別相交于點和 (點與點均不重合),求證: ;
(3)判斷線段上是否存在一點,使得平面平面?若存在,求的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y2=2px(p>0)上橫坐標(biāo)為4的點到焦點的距離為5.
(1)求拋物線C的方程;
(2)設(shè)直線y=kx+b與拋物線C交于A(x1 , y1),B(x2 , y2),且|y1﹣y2|=2,過弦AB中點M作平行于x軸的直線交拋物線于點D,求△ABD的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax2+(b﹣1)x+1(a,b∈R,a>0).
(1)若f(1)=0,且對任意x∈R,都有f(2﹣x)=f(2+x),求f(x)的解析式;
(2)已知x1 , x2為函數(shù)f(x)的兩個零點,且x2﹣x1=2,當(dāng)x∈(x1 , x2)時,g(x)=﹣f(x)+2(x2﹣x)的最大值為,當(dāng)a≥2時,求h(a)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若三個數(shù)a,1,c成等差數(shù)列(其中a≠c),且a2 , 1,c2成等比數(shù)列,則 的值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左右焦點分別為,上頂點為,若直線的斜率為1,且與橢圓的另一個交點為, 的周長為.
(1)求橢圓的標(biāo)準方程;
(2)過點的直線(直線的斜率不為1)與橢圓交于兩點,點在點的上方,若,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(12分)已知函數(shù)f(x)=
(1)判斷函數(shù)在區(qū)間[1,+∞)上的單調(diào)性,并用定義證明你的結(jié)論.
(2)求該函數(shù)在區(qū)間[1,4]上的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)f(x)=sin2x的圖象向右平移φ(0<φ< )個單位后得到函數(shù)g(x)的圖象.若對滿足|f(x1)﹣g(x2)|=2的x1、x2 , 有|x1﹣x2|min= ,則φ=( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com