【題目】BD是等腰直角三角形△ABC腰AC上的中線,AM⊥BD于點(diǎn)M,延長AM交BC于點(diǎn)N,AF⊥BC于點(diǎn)F,AF與BD交于點(diǎn)E.

(1)求證;△ABE≌△ACN;
(2)求證:∠ADB=∠CDN.

【答案】
(1)

證明:∠BAE=∠C=45°,

AB=AC,

∠ABD=∠NAC(∠ADB的余角),

∴△ABE≌△ACN


(2)

證明:由(1)可得AE=NC,

AD=CD,∠EAD=∠C=45°,

∴△ADE≌△CDN,

∴∠ADB=∠CDN.


【解析】(1)通過證明∠BAE=∠C,AB=AC,∠ABD=∠NAC,即可判定△ABE≌△ACN.(2)由AE=NC,AD=CD,∠EAD=∠C,可證明△ADE≌△CDN,利用全等三角形的性質(zhì)即可證明∠ADB=∠CDN.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)集,)具有性質(zhì):對任意、),兩數(shù)中至少有一個屬于集合,現(xiàn)給出以下四個命題:①數(shù)集具有性質(zhì);②數(shù)集具有性質(zhì);③若數(shù)集具有性質(zhì),則;④若數(shù)集)具有性質(zhì),則;其中真命題有________(填寫序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,左、右焦點(diǎn)分別為F1、F2,|F1F2|2,點(diǎn)在橢圓C上.

(1)求橢圓C的方程;

(2)過F1的直線l與橢圓C相交于A、B兩點(diǎn),且△AF2B的面積為,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐S﹣ABCD,SB⊥AD,側(cè)面SAD是邊長為4的等邊三角形,底面ABCD為菱形,側(cè)面SAD與底面ABCD所成的二面角為120°.

(1)求點(diǎn)S到平面ABCD的距離;
(2)若E為SC的中點(diǎn),求二面角A﹣DE﹣C的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)集其中,2,,n,,若對任意的2,,都存在,使得下列三組向量中恰有一組共線:

向量與向量;

向量與向量;

向量與向量,則稱X具有性質(zhì)P,例如2,具有性質(zhì)P.

3,具有性質(zhì)P,則x的取值為______

若數(shù)集3,,具有性質(zhì)P,則的最大值與最小值之積為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某海關(guān)對同時從三個不同地區(qū)進(jìn)口的某種商品進(jìn)行隨機(jī)抽樣檢測,已知從三個地區(qū)抽取的商品件數(shù)分別是50,150,100.檢測人員再用分層抽樣的方法從海關(guān)抽樣的這些商品中隨機(jī)抽取6件樣品進(jìn)行檢測.

1)求這6件樣品中,來自各地區(qū)商品的數(shù)量;

2)若在這6件樣品中隨機(jī)抽取2件送往另一機(jī)構(gòu)進(jìn)行進(jìn)一步檢測,求這2件樣品來自相同地區(qū)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在多面體中, 均為邊長為2的正方形, 為等腰直角三角形, ,且平面平面,平面平面.

(Ⅰ)求證:平面平面;

(Ⅱ)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個幾何體挖去部分后的三視圖如圖所示,若其正視圖和側(cè)視圖都是由三個邊長為2的正三角形組成,則該幾何體的表面積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax﹣ x2﹣aln(x+1)(a>0),g(x)=ex﹣x﹣1,曲線y=f(x)與y=g(x)在原點(diǎn)處的公共的切線.
(1)若x=0為函數(shù)f(x)的極大值點(diǎn),求f(x)的單調(diào)區(qū)間(用a表示);
(2)若x≥0,g(x)≥f(x)+ x2 , 求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案