【題目】設(shè)為實數(shù),且,
(1)求方程的解; (2)若滿足,求證:①②; (3)在(2)的條件下,求證:由關(guān)系式所得到的關(guān)于的方程存在,使
【答案】(1) 或;(2)見解析;(3)見解析.
【解析】試題分析:(1)令即,故.(2)①由于,故,也即,所以, ②由(1)可化簡,令,利用單調(diào)性的定義證明函數(shù)在區(qū)間上為增函數(shù),由此證得.(3)化簡關(guān)系式得到,即,利用消去,得到關(guān)于的方程,利用二分法可判斷零點在區(qū)間.
試題解析:
由,得所以或
(2)證明:①因為,且,可判斷,
所以,即即,則
②由①得令,( )
任取且
因為
===
在上為增函數(shù),
,
(3)證明:
,得又
.
令 ,因為
根據(jù)函數(shù)零點的判斷條件可知,函數(shù)在(3,4)內(nèi)一定存在零點,
即存在使.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場有獎銷售中,購滿100元商品得1張獎券,多購多得,1000張獎券為一個開獎單位,設(shè)特等獎1個,一等獎10個,二等獎50個.設(shè)1張獎券中特等獎、一等獎、二等獎的事件分別為A、B、C,求:
(1)P(A),P(B),P(C);
(2)1張獎券的中獎概率;
(3)1張獎券不中特等獎且不中一等獎的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為研究冬季晝夜溫差大小對某反季節(jié)大豆新品種發(fā)芽率的影響,某農(nóng)科所記錄了5組晝夜溫差與100顆種子發(fā)芽數(shù),得到如下資料:
組號 | 1 | 2 | 3 | 4 | 5 |
溫差() | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)(顆) | 23 | 25 | 30 | 26 | 16 |
該所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求出線性回歸方程,再對被選取的2組數(shù)據(jù)進行檢驗.
(1)若選取的是第1組與第5組的兩組數(shù)據(jù),請根據(jù)第2組至第4組的數(shù)據(jù),求出關(guān)于的線性回歸方程;
(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(1)中所得的線性回歸方程是否可靠?
(參考公式:,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù).
(1)當時,解不等式;
(2)若關(guān)于的方程的解集中恰有一個元素,求的取值范圍;
(3)設(shè),若對任意,函數(shù)在區(qū)間上的最大值與最小值的差不超過1,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中心在坐標原點,焦點在軸上的橢圓,離心率為且過點,過定點的動直線與該橢圓相交于兩點.
(1)若線段中點的橫坐標是,求直線的方程;
(2)在軸上是否存在點,使為常數(shù)?若存在,求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解某班學(xué)生的會考合格率,要從該班70人中選30人進行考察分析,則70人的會考成績的全體是______,樣本是______,樣本量是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體中,四邊形為正方形,,,,,,為的中點.
(1)求證:平面;
(2)在線段上是否存在一點,使得二面角的大小為?若存在,求出的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是數(shù)列的前項和,且滿足,等差數(shù)列的前項和為,且, .
(Ⅰ)求數(shù)列與的通項公式;
(Ⅱ)若數(shù)列的通項公式為,問是否存在互不相等的正整數(shù), , 使得, , 成等差數(shù)列,且 , , 成等比數(shù)列?若存在,求出, , ;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某蛋糕店每天制作生日蛋糕若干個,每個生日蛋糕的成本為50元,然后以每個100元的價格出售,如果當天賣不完,剩下的蛋糕作垃圾處理.現(xiàn)需決策此蛋糕店每天應(yīng)該制作幾個生日蛋糕,為此搜集并整理了100天生日蛋糕的日需求量(單位:個),得到如圖所示的柱狀圖,以100天記錄的各需求量的頻率作為每天各需求量發(fā)生的概率.
(1)若蛋糕店一天制作17個生日蛋糕,
①求當天的利潤(單位:元)關(guān)于當天需求量(單位:個,)的函數(shù)解析式;
②在當天的利潤不低于750元的條件下,求當天需求量不低于18個的概率.
(2)若蛋糕店計劃一天制作16個或17個生日蛋糕,請你以蛋糕店一天利潤的期望值為決定依據(jù),判斷應(yīng)該制作16個是17個?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com