【題目】在平面直角坐標(biāo)系中,橢圓 的離心率為,焦距為.

(Ⅰ)求橢圓的方程;

(Ⅱ)如圖,動直線 交橢圓兩點, 是橢圓上一點,直線的斜率為,且 是線段延長線上一點,且 的半徑為 的兩條切線,切點分別為.求的最大值,并求取得最大值時直線的斜率.

【答案】(1) (2) 的最大值為 ,取得最大值時直線的斜率為 .

【解析】試題分析:(I)本小題由, 確定即得.

(Ⅱ)通過聯(lián)立方程組化簡得到一元二次方程后應(yīng)用韋達定理,應(yīng)用弦長公式確定

的半徑表達式.

進一步求得直線的方程并與橢圓方程聯(lián)立,確定得到的表達式,研究其取值范圍.這個過程中,可考慮利用換元思想,應(yīng)用二次函數(shù)的性質(zhì)及基本不等式.

試題解析:(I)由題意知 ,

所以 ,

因此 橢圓的方程為.

(Ⅱ)設(shè),

聯(lián)立方程

由題意知

,

所以 .

由題意可知圓的半徑

由題設(shè)知,

所以

因此直線的方程為.

聯(lián)立方程

,

因此 .

由題意可知

,

,

因此

當(dāng)且僅當(dāng),即時等號成立,此時

所以 ,

因此

所以 最大值為.

綜上所述: 的最大值為,取得最大值時直線的斜率為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某次數(shù)學(xué)測驗共有10道選擇題,每道題共有四個選項,且其中只有一個選項是正確的評分標(biāo)準規(guī)定:每選對1道題得5,不選或選錯得0,某考試每道都選并能確定其中有6道題能選對其余4道題無法確定正確選項,但這4道題中有2道能排除兩個錯誤選項,2題只能排除一個錯誤選項,于是該生做這4道題時每道題都從不能排除的選項中隨機挑選一個選項做答,且各題做答互不影響

()求該考生本次測驗選擇題得50分的概率;

()求該考生本次測驗選擇題所得分數(shù)的分布列和數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù)f(x)的定義域中任意的x1、x2(x1≠x2),有如下結(jié)論:
①f(x1+x2)=f(x1)f(x2);
②f(x1x2)=f(x1)+f(x2);
>0;
④f( )<
當(dāng)f(x)=2x時,上述結(jié)論中正確的有( )個.
A.3
B.2
C.1
D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校在高二年級開展了體育分項教學(xué)活動,將體育課分為大球(包括籃球、排球、足球)、小球(包括乒乓球、羽毛球)、田徑、體操四大項(以下簡稱四大項,并且按照這個順序).為體現(xiàn)公平,學(xué)校規(guī)定時間讓學(xué)生在電腦上選課,據(jù)初步統(tǒng)計,在全年級980名同學(xué)中,有意申報四大項的人數(shù)之比為3:2:1:1,而實際上由于受多方面條件影響,最終確定的四大項人數(shù)必須控制在2:1:3:1,選課不成功的同學(xué)由電腦自動調(diào)劑到田徑類.

(Ⅰ)隨機抽取一名同學(xué),求該同學(xué)選課成功(未被調(diào)劑)的概率;

(Ⅱ)某小組有五名同學(xué),有意申報四大項的人數(shù)分別為2、1、1、1,記最終確定到田徑類的人數(shù)為,求的分布列及數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知橢圓C: (a>b>0)的離心率為,橢圓C截直線y=1所得線段的長度為.

(Ⅰ)求橢圓C的方程;

(Ⅱ)動直線l:y=kx+m(m≠0)交橢圓CA,B兩點,交y軸于點M.點NM關(guān)于O的對稱點,⊙N的半徑為|NO|. 設(shè)DAB的中點,DE,DF與⊙N分別相切于點E,F,求EDF的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)
(1)在如圖給定的直角坐標(biāo)系內(nèi)畫出f(x)的圖象;(直接畫圖,不需列表)

(2)寫出f(x)的單調(diào)遞增區(qū)間及值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}中,a1=3,an+1=can+m(c,m為常數(shù))
(1)當(dāng)c=1,m=1時,求數(shù)列{an}的通項公式an;
(2)當(dāng)c=2,m=﹣1時,證明:數(shù)列{an﹣1}為等比數(shù)列;
(3)在(2)的條件下,記bn= ,Sn=b1+b2+…+bn , 證明:Sn<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某保險公司利用簡單隨機抽樣方法,對投保車輛進行抽樣,樣本車輛中每輛車的賠付結(jié)果統(tǒng)計如下:

賠付金額()

0

1 000

2 000

3 000

4 000

車輛數(shù)()

500

130

100

150

120

(1)若每輛車的投保金額均為2800,估計賠付金額大于投保金額的概率.

(2)在樣本車輛中,車主是新司機的占10%,在賠付金額為4000元的樣本車輛中,車主是新司機的占20%,估計在已投保車輛中,新司機獲賠金額為4000元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2016年10月,繼微信支付對提現(xiàn)轉(zhuǎn)賬收費后,支付寶也開始對提現(xiàn)轉(zhuǎn)賬收費,隨著這兩大目前用戶使用粘度最高的第三方支付開始收費,業(yè)內(nèi)人士分析,部分對價格敏感的用戶或?qū)⒒亓髦羵鹘y(tǒng)銀行體系,某調(diào)查機構(gòu)對此進行調(diào)查,并從參與調(diào)查的數(shù)萬名支付寶用戶中隨機選取200人,把這200人分為3類:認為使用支付寶方便,仍使用支付寶提現(xiàn)轉(zhuǎn)賬的用戶稱為“類用戶”;根據(jù)提現(xiàn)轉(zhuǎn)賬的多少確定是否使用支付寶的用戶稱為“類用戶”;提前將支付寶賬戶內(nèi)的資金全部提現(xiàn),以后轉(zhuǎn)賬全部通過銀行的用戶稱為“類用戶”,各類用戶的人數(shù)如圖所示:

同時把這200人按年齡分為青年人組與中老年人組,制成如圖所示的列聯(lián)表:

類用戶

類用戶

合計

青年

20

中老年

40

合計

200

(Ⅰ)完成列聯(lián)表并判斷是否有99.5%的把握認為“類用戶與年齡有關(guān)”;

(Ⅱ)從這200人中按類用戶、類用戶、類用戶進行分層抽樣,從中抽取10人,再從這10人中隨機抽取4人,求在這4人中類用戶、類用戶、類用戶均存在的概率;

(Ⅲ)把頻率作為概率,從支付寶所有用戶(人數(shù)很多)中隨機抽取3人,用表示所選3人中類用戶的人數(shù),求的分布列與期望.

附:

0.01

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:,其中

查看答案和解析>>

同步練習(xí)冊答案