設(shè)函數(shù)y=f(x)對任意的實數(shù)x,都有f(x)=
12
f(x-1)
,且當x∈[0,1]時,f(x)=27x2(1-x).
(1)若x∈[1,2]時,求y=f(x)的解析式;
(2)對于函數(shù)y=f(x)(x∈[0,+∞)),試問:在它的圖象上是否存在點P,使得函數(shù)在點P處的切線與 x+y=0平行.若存在,那么這樣的點P有幾個;若不存在,說明理由.
(3)已知 n∈N*,且 xn∈x[n,n+1],記 Sn=f(x1)+f(x2)+…+f(xn),求證:0≤Sn<4.
分析:(1)由f(x)=
1
2
f(x-1)
,設(shè)x∈[1,2],則0≤x-1≤1,能求出f(x).
(2)設(shè)x∈[n,n+1],則0≤x-n≤1,f(x-n)=27(x-n)(n+1-x),f(x)=
1
2
f(x-1)
=
1
22
(x-2)
=
1
23
(x-3)
=…=
1
2n
(x-n)
=
27
2n
(x-n)2(n+1-x),由此入手能夠求出滿足題意的點P的個數(shù).
(3)由(2)知f′(x)=-
81
2n
(x-n)[x-(n+
2
3
)],當x∈(n,n+
2
3
)時,f′(x)>0,f(x)在(n+
2
3
,n+1)上遞減,當x∈[n,n+1],n∈N時,f(x)max=f(n+
2
3
)=
1
2n-1
,
又f(x)≥f(n)=f(n+1)=0,由此能夠證明0≤Sn<4.
解答:解:(1)∵f(x)=
1
2
f(x-1)
,
設(shè)x∈[1,2],則0≤x-1≤1,
∴f(x)=
1
2
f(x-1)
=
27
2
(x-1)2(2-x).
(2)設(shè)x∈[n,n+1],則0≤x-n≤1,
f(x-n)=27(x-n)(n+1-x),
∴f(x)=
1
2
f(x-1)
=
1
22
(x-2)
=
1
23
(x-3)
=…=
1
2n
(x-n)
=
27
2n
(x-n)2(n+1-x),
∴y=f(x),x∈[0,+∞].
f(x)=
27
2n
(x-n)2(n+1-x)
,x∈[n,n+1],n∈N.
∴f′(x)=
27
2n
[2(x-n)(n+1-x)-(x-n)2]

=-
27
2n
[3x2-2(3n+1)x+n(3n+2)]
=-
81
2n
[x2-2(n+
1
3
)x+n(n+
2
3
)]
=-
81
2n
(x-n)[x-(n+
2
3
)],
∴問題轉(zhuǎn)化為判斷關(guān)于x的方程-
81
2n
(x-n)[x-(n+
2
3
)]=-1在[n,n+1],n∈N內(nèi)是否有解,
(x-n)[x-(n+
2
3
)]=-1
在[n,n+1],n∈N內(nèi)是否有解,
令g(x)=(x-n)[x-(n+
2
3
)]-
2n
81
=xn-
6n+2
3
x+
3n2+2n
3
-
2n
81

函數(shù)y=g(x)的圖象是開口向上的拋物線,
其對稱軸是直線x=n+
1
3
∈[n,n+1],
判別式△=(-
6n+2
3
)2-4(
3n2+2n
3
-
2n
81
)
=
4
9
+
2n+2
81
>0
,
且g(n)=-
2n
81
<0
,g(n+1)=
1
3
-
2n
81
=
27-2n
81

①當0≤n≤4,n∈N時,∵g(n+1)>0,
∴方程(x-n)[x-(n+
2
3
)]=-1
分別在區(qū)間[0,1],[1,2],[2,3],[3,4],[4,5]上各有一解,
即存在5個滿足題意的點P.
②當n≥5(n∈N)時,∵g(n+1)<0,
∴方程(x-n)[x-(n+
2
3
)]=-1
在區(qū)間[n,n+1],n∈N,n≥5上無解.
綜上所述,滿足題意的點P有5個.
(3)由(2)知f′(x)=-
81
2n
(x-n)[x-(n+
2
3
)],
∴當x∈(n,n+
2
3
)時,f′(x)>0,f(x)在(n+
2
3
,n+1)上遞減,
∴當x∈[n,n+1],n∈N時,f(x)max=f(n+
2
3
)=
1
2n-1

又f(x)≥f(n)=f(n+1)=0,
∴對任意的n∈N*,當xn∈[n,n+1]時,都有0≤f(xn)≤
1
2n-1

∴Sn=f(x1)+f(x2)+…+f(xn
1
2-1
+
1
20
+
1
2
+
1
22
+…+
1
2n-2

=4-
1
2n-1
<4,
∴0≤Sn<4.
點評:本題考查解析式的求法,考查滿足條件的點的個數(shù)的求法,考查不等式的證明.解題時要認真審題,注意等價轉(zhuǎn)化思想的合理運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)y=f(x)對任意正實數(shù)x,y都有f(x•y)=f(x)+f(y),已知f(8)=3,則f(
2
)
等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)y=f(x)對一切實數(shù)x都有f(3+x)=f(3-x)且方程恰有6個不同的實根,則這6個根之和為
18
18

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)y=f(x)對任意實數(shù)x,都有f(x)=2f(x+1),當x∈[0,1]時,f(x)=
27
4
x2(1-x).
(Ⅰ)已知n∈N+,當x∈[n,n+1]時,求y=f(x)的解析式;
(Ⅱ)求證:對于任意的n∈N+,當x∈[n,n+1]時,都有|f(x)|≤
1
2n

(Ⅲ)對于函數(shù)y=f(x)(x∈[0,+∞),若在它的圖象上存在點P,使經(jīng)過點P的切線與直線x+y=1平行,那么這樣點有多少個?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年湖南省郴州市汝城一中高三(上)周練數(shù)學試卷(4)(理科)(解析版) 題型:解答題

設(shè)函數(shù)y=f(x)對任意的實數(shù)x,都有,且當x∈[0,1]時,f(x)=27x2(1-x).
(1)若x∈[1,2]時,求y=f(x)的解析式;
(2)對于函數(shù)y=f(x)(x∈[0,+∞)),試問:在它的圖象上是否存在點P,使得函數(shù)在點P處的切線與 x+y=0平行.若存在,那么這樣的點P有幾個;若不存在,說明理由.
(3)已知 n∈N*,且 xn∈x[n,n+1],記 Sn=f(x1)+f(x2)+…+f(xn),求證:0≤Sn<4.

查看答案和解析>>

同步練習冊答案